
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Rethinking Dead Block Prediction
for Intermittent Computing

Gan Fang and Changhee Jung
Department of Computer Science, Purdue University

{fang301,chjung}@purdue.edu

Abstract—Existing dead block predictors have proven to be
effective in reducing cache leakage power of conventional systems.
However, prior work is significantly less effective in energy
harvesting systems in that it does not take into account their
unique characteristic, i.e., frequent power failure during program
execution. Even if some cache blocks are predicted to be live,
they may not be used due to their loss upon power failure. In
response, this paper introduces EDBP, an extension to existing
dead block predictors, to enhance their performance in various
energy harvesting environments. EDBP can identify and deac-
tivate those cache blocks that are not reused before upcoming
power failure—though they are considered live by the existing
predictor—thereby lowering cache leakage and preserving more
energy for forward execution progress. Experimental results show
that for 20 applications from Mediabench and MiBench, EDBP
alone reduces total energy consumption by 6.5% and improves
performance by 6.9% compared to the baseline with no dead
block predictor. When combined with a conventional dead block
predictor (Cache Decay), EDBP achieves 9.8% reduction in total
energy consumption—approaching the theoretical minimum—
and 11.9% performance improvement.

I. INTRODUCTION

Energy harvesting systems have become a popular alter-
native to battery-powered embedded devices, offering bene-
fits such as environmental friendliness and self-sustainability
owing to the battery-free nature [53]. These systems can be
widely adopted across various domains, including batteryless
IoT [10], [22], [30], [67], stream and river surveillance [31],
[60], health and wellness monitoring [12], [13], [20], [51],
and wearable computing [14], [17], [39], [48], [49]. Instead
of relying on a battery, they harvest energy from ambient
sources such as radio frequency (RF) and WiFi. However,
these sources are often unstable and weak, resulting in frequent
power failure on which all volatile data is lost [1], [6], [11],
[27], [28], [33], [40], [41], [43], [57], [62]. To avoid losing
critical data and guarantee correct recovery from power failure,
researchers have leveraged nonvolatile memory (NVM) as the
main memory and developed crash consistency mechanisms—
that typically perform checkpoint and restore operations across
the failure [8], [16], [69], [75].

A critical component of energy harvesting systems is the
capacitor that serves to buffer the harvested energy. Along
with frequent power interruptions, this characterizes energy
harvesting systems as intermittent computing systems. That is,
they compute only when the capacitor is sufficiently charged.
Upon depletion, they lose all volatile states due to the resulting
power outage and should hibernate to recharge. They can only

resume after securing enough energy in the capacitor. In the
literature, the period from the resumption to the next power
outage is called a power cycle.

The takeaway is that energy availability directly impacts
the forward execution progress, i.e., the more energy the
longer power cycle, and in turn influences the performance of
energy harvesting systems. In a sense, improving the energy
efficiency is the key to achieving performance gains. Previous
research has primarily focused on reducing checkpointing
costs to conserve harvested energy for forward progress. One
prevalent and effective approach is so-called just-in-time (JIT)
checkpointing that can minimize the costs by making a single
checkpoint at the end of each power cycle and restoring
the data at the start of the next. This approach improves
energy efficiency by dedicating more of the available energy to
program execution rather than frequent checkpoint operations.

To further improve energy efficiency, researchers have re-
cently proposed techniques for incorporating SRAM caches
without compromising the crash consistency. Data reuse in
the cache can save energy a lot by avoiding the NVM access
that is the most energy-consuming operation in the processor.
For example, a prior cache-enabled energy harvesting system
achieves about 90% energy consumption reduction and the
resulting speedup of 8.5x compared to the cacheless baseline
[69]. However, the introduction of SRAM caches causes sig-
nificant leakage current [2], [32], possibly wasting harvested
energy that could otherwise be spent on forward execution
progress. Traditionally, dead block predictors can effectively
mitigate the leakage problem [2], [32], [74], e.g., Cache Decay
[32] marks blocks as dead if they have been unused for a
period of time since their last access. By deactivating such
dead blocks [52], Cache Decay reduces cache leakage energy
by roughly 80% with little impact on performance [32].

Nevertheless, existing dead block predictors are originally
designed without taking into account intermittent computing
and just treat a block as dead if it has no further access
before eviction. As a result, they fail to achieve optimal
energy savings in energy harvesting systems where power
outages act as an additional eviction mechanism. That is,
even if some cache blocks are predicted to be live, they may
disappear on a power outage before their access; caching
such unusable blocks wastes hard-won energy in vain, and
we refer to them as zombie blocks in that they look alive
but are dead. Unfortunately, this problem is exacerbated by
the frequent power outages of energy harvesting systems [15],

[69], resulting in many zombie cache blocks and significant
performance degradation.

In response, this paper introduces EDBP, an Extension to
existing Dead Block Predictors so that when needed, they let
EDBP handle zombie cache blocks—on their manifestation
near a power outage. If power is steady, i.e., no sign of zombie
blocks yet, the existing predictor just works fine; otherwise
EDBP takes over to deactivate them. That way EDBP creates
a synergy with the existing predictor in reducing cache leakage
energy, thereby significantly improving the performance of
energy harvesting systems. For the successful realization of
EDBP, it is important to enable EDBP in a timely manner.

To achieve this, EDBP makes an important observation that
as a power outage is approaching, more cache blocks turn
into zombie blocks. This implies that EDBP can anticipate
their manifestation based on the proximity to the next power
outage. Therefore, EDBP tracks the capacitor’s voltage, the
degradation of which triggers EDBP to take over. When the
voltage drops below a preset threshold, i.e., a power outage
occurs soon, EDBP starts to deal with the potential zombie
blocks. EDBP then regards near-LRU blocks as zombies—
with the upcoming power outage in mind—and deactivates
them for power saving. More precisely, EDBP leverages
multiple thresholds that control how aggressive the zombie
detection is, e.g., at a higher voltage threshold, EDBP takes
a conservative approach which only treats the LRU blocks as
zombies. The upshot is that EDBP can easily get the recency
information of cache blocks, which is the basis for its zombie
detection, as long as LRU caches or their variants are used.

The experiment with 20 applications from Mibench [25] and
Mediabench [39] shows that for a real RF energy-harvesting
power trace [23], [55], EDBP alone achieves 6.5% energy con-
sumption reduction and 6.9% overall performance improve-
ment compared to the baseline without dead block prediction.
Moreover, it turns out that EDBP works well in combination
with a conventional dead block predictor (Cache Decay [32]),
resulting in 9.8% energy consumption reduction and 11.9%
overall performance improvement. Note that EDBP delivers
robust performance across diverse experimental conditions
varying capacitor size, energy condition, cache size, cache
associativity, and NVM technology. The contributions of this
paper can be summarized as follows:

• EDBP adapts dead block prediction for energy harvesting
systems with their unique characteristics in mind.

• EDBP significantly improves the energy efficiency and
performance of energy harvesting systems.

• EDBP is lightweight, piggybacking on the existing LRU
cache structure.

II. ENERGY HARVESTING SYSTEM BASICS

Energy harvesting systems often take a just-in-time (JIT)
checkpointing approach which saves volatile states right before
impending power failure and restores them in the wake of the
failure [5], [19], [26], [27], [35], [43], [45]–[47], [58], [70],
[72]. To trigger the checkpoint just in time, this approach takes
advantage of a voltage monitor that continuously inspects the

variation of supply voltage. Whenever the capacitor voltage
dips below a predefined threshold, i.e., power failure is about
to occur, the voltage monitor immediately and signals the
checkpointing logic to save volatile registers including a
program counter (PC); the threshold should be high enough
to dedicate a sufficient amount of energy for failure-atomic
checkpointing. When the detected voltage rises above another
restoration threshold, the register file is restored from the
checkpointed registers.

There are three-fold benefits of the JIT checkpointing
approach. First, since the PC has been checkpointed as a
part of the register file, program can pick up from when it
got interrupted by the power failure. Second, this allows for
roll-forward recovery, which is free from crash inconsistency
issues, e.g., write-after-read also known as anti-dependence,
and thus the JIT checkpointing approach can safely ignore
them achieving simple yet effective recovery. Third, the JIT
checkpointing approach can minimize the energy consumption
for the volatile state saving by making a single checkpoint
at the end of each power cycle, i.e., only at the moment of
power failure, rather than periodically creating checkpoints
while power is stable.

Recently, energy harvesting systems have adopted SRAM
cache on top of nonvolatile main memory to improve their
performance. For correct power failure recovery, the cache-
enabled energy harvesting systems integrate the JIT check-
pointing approach with the volatile cache so that it can
maintain data across the failure. Among the existing systems,
NVSRAMCache is the most popular and promising [5], [27],
[43], [46], [47], [58], [59], [64]. Instead of relying on slow
nonvolatile main memory as checkpoint storage, NVSRAM-
Cache instantly checkpoints all necessary volatile states, i.e.,
registers and dirty cache blocks, to their neighboring non-
volatile counterparts. Thus, NVSRAMCache can significantly
reduce both the checkpoint and the restoration costs and
improve the performance a lot by turning expensive NVM
access into SRAM access in the cache.

III. MOTIVATION

However, due to resource constraints—and the energy se-
cured for the failure-atomicity of the JIT checkpointing, energy
harvesting systems typically use very small SRAM caches,
leading to frequent cache misses and high energy consumption
due to their resulting NVM accesses. A naive solution is to
increase the cache size, accommodating more data therein.
Unfortunately, larger SRAM caches come with significantly
higher leakage power, to the point of compromising the overall
efficiency and performance of energy harvesting systems. As
shown in the second row of Table I, the leakage power of a
4-way SRAM cache increases significantly as its size grows
from 256B to 16kB. Specifically, the leakage rises from 0.09
mW to 3.54 mW, under the same configuration described
in our evaluation Section VI-A. Additionally, the third row
of the table presents the ratio of static energy to the total
energy consumption of the SRAM data cache. As cache size

TABLE I: SRAM cache leakage power (mW) and the ratio
(%) of static energy to the total energy consumption of the
SRAM data cache.

Size 256B 512B 1kB 2kB 4kB 8kB 16kB
Power (mW) 0.09 0.17 0.35 0.69 1.22 2.43 3.54

StaticEnergy% 17.04 29.11 43.58 59.29 72.79 83.88 90.89

256B 512B 1kB 2kB 4kB 8kB 16kB0.0
0.2
0.4
0.6
0.8
1.0

Sp
ee

du
p

Real leakage 80% Leakage Off

Fig. 1: Performance across different cache sizes. All speedups
are normalized to 4-way 4kB caches with real leakage.

Miss EvictHit Hit Hit

Cache block generation

Live time Dead timeLast
access

Turn off

Predict
dead

Miss Reuse Reuse Miss

Cache

Block A

Cache Cache

Leakage that
can be saved

Miss Reuse Reuse Evict

Live time Dead time

Miss Reuse Miss Evict

Live time Dead timeDead time

Cache

A
Cache Cache

A
Cache

Miss Reuse

Block A is zombie

Cache

A
Cache Cache

T1 T2

Cache

A
Cache

A
Cache

T1 T2 T3

Fig. 2: Dead block definition. Blue block means continuous
program execution.

increases, static energy increasingly dominates overall cache
energy consumption.

The takeaway is that energy harvesting systems must pick a
suitable cache size, which would otherwise waste a substantial
amount of hard-won energy and lead to performance degrada-
tion. To find the most suitable cache size, we evaluated differ-
ent cache sizes on top of NVSRAMCache for 20 applications
from Mediabench and MiBench [25], [39], using the default
settings in Table II. Figure 1 shows that while increasing the
cache size from 256B to 4kB enhances performance, enlarging
the cache beyond 4kB rather degrades performance due to
the substantial energy wasted by higher cache leakage power.
Therefore, this paper selects 4kB as the default cache size of
EDBP.

To stress-test the impact of cache leakage on performance,
we also evaluated the performance of NVSRAMCache by
magically reducing cache leakage by 80% without impacting
the cache hit rate. The results, shown in Figure 1 (labeled as
80% Leakage Off), clearly demonstrate that reducing cache
leakage allows NVSRAMCache to achieve higher performance
gains as the cache size increases from 256B all the way up
to 16kB. This implication is that the performance of energy
harvesting systems is severely constrained by excessive cache
leakage energy.

A straightforward approach to addressing the cache leakage
problem is to use existing dead block predictors [2], [32],
[74] for identifying and deactivating cache blocks that are not
usable but just consume energy in vain. Figure 2 shows an
example of the dead block in conventional processors. Block
A is live since it has reuse at T1 and T2. However, it becomes

Miss EvictHit Hit Hit

Cache block generation

Live time Dead timeLast
access

Turn off

Predict
dead

Miss Reuse Reuse Miss

Cache

Block A

Cache Cache

Leakage that
can be saved

Miss Reuse Reuse Evict

Live time Dead time

Miss Reuse Miss Evict

Dead timeZombie time

Cache

A
Cache Cache

A
Cache

Miss Reuse

Block A is zombie

Cache

A
Cache Cache

T1 T2

Cache

A
Cache

A
Cache

T1 T2 T3

Fig. 3: Zombie block definition in energy harvesting systems.
Blue block means continuous program execution.

a dead block from T2 to T3 since it does not have any
accesses before its eviction at T3. In light of this, dead block
predictors leverage gate-Vdd [52] to deactivate these dead
blocks to reduce cache leakage power. One notable example
is Cache Decay [32] that considers blocks dead if they remain
unused for a specific duration since their last access. However,
when existing dead block predictors are integrated into energy
harvesting systems, they can be easily fooled by power outages
which serve as an additional eviction mechanism. As a result,
those cache blocks predicted to be live may not receive any
accesses before their loss upon a power outage. We refer to
such blocks as zombie blocks. By deactivating these zombie
blocks, static cache energy consumption can be further reduced
without impacting performance.

Figure 3 shows this scenario. At T1, the existing dead block
predictor (Cache Decay) can accurately predict that Block A
will be reused in the future, so Block A remains in the cache
with no power gating. However, a power outage occurring
before its reuse causes the cached data to be lost (T2).
Consequently, Block A is classified as a zombie during the time
period from T1 to T2. Here, the static energy consumed by
Block A from its last access until the power outage is entirely
wasted, as it does not contribute to any cache hits at all.

3.35V 3.30V 3.25V
60
65
70
75
80

Zo
m

bi
e

Ra
tio

 %

Fig. 4: The ratio of zombie
blocks to total blocks with
varying capacitor voltage.

Unfortunately, this kind of
energy waste can be significant
since the portion of these zom-
bie blocks increases as the ca-
pacitor voltage decreases—i.e.,
approaching a power outage—
as shown in Figure 4. Notably,
when the voltage falls below
3.25 V, approximately 80% of
the cache blocks become zom-
bies.

Even worse, due to the high frequency of power outages
in energy harvesting systems, such zombie blocks can occur
repeatedly throughout program execution. As a result, current
dead block predictors miss many opportunities to reduce cache
leakage energy more aggressively and efficiently. Therefore,
the goal of this paper is to tailor existing dead block predictors
for energy harvesting systems by identifying zombie blocks
and turning them off to reduce energy consumption.

IV. ZOMBIE, DEAD AND LIVE BLOCKS

To accurately assess energy savings of dead block prediction
in energy harvesting systems, it is necessary to redefine the

metrics used in the literature by considering the zombie blocks.
These metrics include correct/wrong dead block prediction,
coverage, and accuracy. For better understanding, we refer to
those cache blocks that are reused before the power outage
and their eviction as live blocks in the following.

Correct predictions consist of true positives, where dead and
zombie blocks are accurately deactivated, and true negatives,
where live blocks are correctly retained. On the other hand,
incorrect predictions include false positives, where live blocks
are mistakenly deactivated, and false negatives, where dead
and zombie blocks are unnecessarily kept active in the cache.
Based on this, coverage in dead block prediction can be
redefined by the ratio of correctly identified dead and zombie
blocks (true positives) to the total number of dead and zombie
blocks which includes not only correctly identified dead and
zombie blocks (true positives) but also those that were incor-
rectly marked as live (false negatives), as shown in Equation
1. Similarly, accuracy can be redefined by the ratio of correct
predictions, which is the sum of correctly identified dead and
zombie blocks (true positives) and correctly identified live
blocks (true negatives), to the total number of predictions, as
shown in Equation 2.

Coverage =
TruePositives

TruePositives+ FalseNegatives
(1)

Accuracy =
TruePositives+ TrueNegatives

TotalPredictions
(2)

V. IMPLEMENTATION

The goal of EDBP is to find and deactivate zombie blocks
with the anticipation of power outages. For this purpose, EDBP
monitors the capacitor’s voltage level to gauge the proximity
of the next power outage and determine the optimal timing to
start recognizing and killing zombie blocks. Specifically, when
the voltage drops below a predefined threshold, indicating an
imminent power outage, EDBP takes over to deal with the oc-
currence of zombie blocks. This raises the following questions:
Which cache blocks should be identified as zombies? When to
detect the zombie blocks? How aggressive the zombie block
detection needs to be depending on the proximity to upcoming
power failure? The following sections address these questions
in detail.

A. Which Block to Deactivate

EDBP follows two key principles for the identification
of potential zombie cache blocks. The first principle is to
track down those blocks that are least likely to be accessed
again—before the next power outage. In this way, EDBP can
avoid the occurrence of cache misses to the greatest extent,
while deactivating those with little recency as zombies. Note
that achieving this design is simple and does not require
heavy modification on cache microarchitecture. EDBP can
refer to any cache replacement policy in capable of holding
the information about which cache blocks are least likely to
be accessed. For instance, with a (pseudo) LRU replacement
policy, EDBP prioritizes those blocks near the LRU position
as zombies by checking their LRU bits.

Miss Reuse Miss Evict

Live time Dead timeDead time

Cache

A

Cache Cache

A

Cache

4-Way Cache
MRU LRU

Active clean Block Turn-off BlockActive dirty Block

𝑉𝑡ℎ𝑟𝑒𝑠
1 𝑉𝑡ℎ𝑟𝑒𝑠

2
𝑉𝑡ℎ𝑟𝑒𝑠
3

Fig. 5: Zombie blocks detection and deactivation.

The second principle is to select cache blocks that can
accomplish more energy savings when they are deactivated. In
reality, the energy cost for deactiviating a cache block varies
depending on its state, i.e., dirty or clean. That is because
dirty blocks require their write back before deactivation, which
would otherwise lead to data loss, whereas clean blocks do
not. This implies that deactivating clean blocks may allow
energy harvesting systems to save more energy. Therefore,
EDBP prioritizes clean cache blocks over dirty ones during its
zombie block detection. Based on these two principles, EDBP
can identify suitable blocks as zombies.

B. When to Deactivate Zombie Blocks

To decide when to take care of zombie blocks, EDBP sets
the voltage thresholds (Vthres) at different levels, the reach
of which triggers their detection and deactivation. As the
capacitor voltage progressively drops below each predefined
threshold, it is a sign that the energy harvesting system moves
closer to a power outage. With these thresholds, EDBP can
control the aggressiveness of its zombie block detection and
deactivation. A higher voltage threshold allows for earlier
cache block deactivation, which raises the risk of deactivating
blocks that may still be needed and potentially cause cache
misses. In response, EDBP can take a conservative approach
which only treats the LRU blocks across all sets as zombies.
On the other hand, a lower voltage threshold, clear sign of
upcoming power failure, allows EDBP to deactivate blocks
more confidently since it is less likely to deactivate live blocks
in the anticipation of the failure. Thus, in this case, EDBP can
be more aggressive by deactivating not just the LRU block but
also near-LRU blocks.

Figure 5 presents a high-level view of how EDBP detects
and deactivates zombies cache blocks. For an n-way associa-
tive cache, EDBP prepares n − 1 voltage thresholds ranging
from V 1

thres (highest) to V n−1
thres (lowest). Whenever capacitor

voltage (V) dips below a threshold V i
thres, the corresponding

i-th LRU clean blocks are turned off—with an exception for
reaching V n−1

thres in which case all non-MRU blocks are turned
off whether they are clear or dirty. For example, when V drops
below V 1

thres (1), only the LRU blocks are deactivated. When
the voltage drops below the lowest threshold V n−1

thres, it means
a power outage is very likely to happen soon; so EDBP more
aggressively deactivates both dirty and clean blocks that are
not in the MRU position (2). Notably, EDBP consistently
keeps blocks at the MRU position active, regardless of the
system’s proximity to a power outage. This heuristic is based

on the observation that data in the MRU position is highly
likely to be reused shortly [42]. With this design, EDBP can
accurately detect the zombie blocks and achieve high cache
leakage energy reduction. Then, the remaining question is to
determine the values for each threshold.

1) Voltage Values Determination: To identify the optimal
threshold values that can maximize the performance of EDBP,
we empirically test various benchmark applications [25], [39]
under different energy harvesting conditions. However, a fixed
voltage threshold may be suboptimal in several scenarios.
First, when energy availability fluctuates unpredictably, a
transient voltage dip tends to mistakenly deactivate usable
cache blocks. Second, slow voltage decreases, indicating it
takes a while to encounter a power outage, can cause blocks to
be treated as zombies too early, which may lead to high false
positive rates. Third, fixed thresholds may falsely deactivate
usable blocks especially for those workloads that have a high
demand of cache accesses. In summary, all three scenarios
arise from variations of harvested energy, rendering fixed
thresholds suboptimal. They may result in additional cache
misses and higher false positive rates. Therefore, in the pursuit
of high performance, EDBP must be capable of adapting to
varying energy condition.

For this purpose, EDBP proposes an adaptation technique
that adjusts voltage thresholds based on false positive rates
on the fly. By monitoring the false positive rate, EDBP
can minimize the risk of imprecisely classifying too many
live blocks as zombies. To realize this, EDBP empirically
determines a reference rate for voltage threshold adjustments.
If the current false positive rate exceeds this reference, in-
dicating excessive deactivation of live blocks, EDBP lowers
all thresholds by 50 mV 1 to be more conservative in the
zombie block detection. Conversely, if the rate is below the
reference, it is hard to tell whether the deactivation is overly
conservative or appropriately balanced. In that case, EDBP
resets the thresholds to their initial values if they are currently
lower; otherwise, it keeps them unchanged.

EDBP calculates the false positive rate and accordingly
adjusts the voltage thresholds at reboot time, i.e., in the
wake of power failure. For each power cycle, EDBP collects
statistics necessary for the calculation and saves them at the
end of the cycle via the JIT checkpointing—as with other
volatile states. In the beginning of the next power cycle, i.e.,
when the system reboots, EDBP restores these statistics to
calculate the false positive rate. To implement this, EDBP
requires three extra volatile registers: RWrongKill, RTotal,
and RFPR, along with an SRAM-based FIFO deactivation
buffer. Here, RWrongKill tracks the number of live blocks
incorrectly deactivated, RTotal records the total number of
predicted blocks, and RFPR stores the calculated false positive
rate (RWrongKill/RTotal). In addition, EDBP implements a
deactivation buffer for maintaining the addresses of all the
cache blocks that have been deactivated for a given power

150 mV is the resolution of the state-of-the-art voltage monitor [63] used
in this work.

cycle. Each time a block in the sample set is deactivated, its
address is stored in the deactivation buffer—if it is not full;
otherwise, EDBP evicts the oldest address to make room.

However, since there are many blocks in the cache, record-
ing their statistics may lead to frequent updates on the de-
activation buffer. For example, when LRU blocks need to
be deactivated in a 64-set cache, the buffer should be able
to accommodate the total 64 block addresses, resulting in
significant energy consumption. To solve this problem, EDBP
selects a single cache set as a representative sample and col-
lects statistics exclusively from this set. That is, RWrongKill

tracks incorrectly deactivated live blocks only for the sample
set; likewise, RTotal only counts predicted blocks of the same
set. That way, the deactivation buffer only needs to follow
the deactivated blocks of the sample set. With the help of
the sampling mechanism, EDBP can calculate a false positive
rate for each power cycle on the cheap without degrading the
accuracy (only 3.7% loss).

VI. EVALUATION

A. Methodology

TABLE II: Simulation Configuration

NVSRAMCache SDBP Cache Decay EDBP
Vmax/Vmin 3.5/2.8 3.5/2.8 3.5/2.8 3.5/2.8
Vckpt/Vrst 3.2/3.4 3.2/3.4 3.2/3.4 3.2/3.4
MCU Power 160 µW/MHz

Capacitor 0.47 µF
Energy Trace RFHome
Deact. Buffer N/A N/A N/A 8

Data Cache 4kB, SRAM, 4-way, 16B block, LRU,
Access: 5.30 ns/1.05 nJ , Leak: 1.22 mW

Inst. Cache
4kB, ReRAM, 4-way, 16B block, LRU,

Hit: 19.44 ns/3.65 nJ , Miss: 9.99 ns/0.9 nJ ,
Write: 202.35 ns/3.55 nJ , Leak: 0.22 mW

Memory 16MB, ReRAM

1) Simulator, Baseline, and Competitors: We model EDBP
and other schemes on the gem5 [9], simulating a 25 MHz
single-core in-order nonvolatile processor based on ARM
ISA with 16 registers as in NVPsim [23]. Table II details
the simulation configurations for EDBP, the baseline NVS-
RAMCache, and two competitors, i.e., SDBP [44] and Cache
Decay [32]. For the cache setting, all these schemes leverage
SRAM as the write-back data cache and ReRAM serves as the
instruction cache, as with prior studies [5], [16], [27], [43],
[46], [47], [58], [59], [64], [69], [75]. To accurately model
cache and memory access latencies and power consumptions,
we utilized NVSim [18] calibrated with parameters from 180
nm technology [7], [24], [50], [54].

For the baseline architecture, we choose NVSRAMCache
[23] which makes a JIT checkpoint of the entire register file
and all dirty cache blocks to their nonvolatile counterparts
right before each power outage. SDBP enhances the perfor-
mance of NVSRAMCache by utilizing dead block prediction.
Specifically, it mitigates the cold cache effect caused by power
failure by checkpointing only the cache blocks likely to be
reused in the future. In the wake of the power failure, SDBP

adpcmd
adpcme

basicm
ath
dijkstra fft gsmd

gsme ifft jpegd
jpege

pegwitd
rijndaeld

rijndaele sha
susanc

susane
susans

gmean0255075100
Pe

rc
en

t %
TP FP TN FN Missed Prediction (FN)

Fig. 6: True/false rates. TP=True Positives; FP=False Positives; TN=True Negatives; FN=False Negatives; Misses Prediction
(FN) means dead blocks are not predicted, which can also be categorized as FN. There are three bars for each application.
From left to right: Cache Decay, EDBP, Cache Decay+EDBP.

restores these blocks to the cache, effectively reducing the
cache miss rate. Unlike other approaches that save the entire
cache, SDBP selectively avoids checkpointing and restoring
dead blocks, conserving more harvested energy for forward
progress.

In particular, we evaluate the performance of EDBP in two
different settings. First, we analyzed EDBP independently to
determine its impact on the baseline architecture. Second,
we combined EDBP with Cache Decay to evaluate the en-
hancements it brings to a conventional dead block predictor.
These evaluations help quantify the individual and synergistic
benefits of EDBP in optimizing energy efficiency and the
performance of energy harvesting systems.

2) Benchmarks, Traces, and Sensitivity Analyses: We uti-
lize 20 applications from Mediabench and MiBench bench-
mark suites [25], [39] for evaluation. In the following, we
assess the performance of all schemes using multiple real-
world energy harvesting traces, including RFHome, RFOffice,
solar, and thermal [23], [55]. The solar and thermal sources
have higher portions of high energy while RFHome and
RFOffice have less. As a result, energy harvesting systems
experience fewer power outages when running with thermal
and solar traces, but encounter more frequent outages with
RFHome and RFOffice traces. Besides, we conduct sensitivity
analysis on the capacitor size, cache replacement policy, cache
size, cache associativity, memory size, and NVM technology.
This helps to evaluate the robustness of EDBP and determine
how each parameter impacts the overall energy efficiency and
performance of the energy harvesting system.

B. Hardware Cost Analysis

EDBP incurs low hardware overhead since it leverages
many existing hardware structures. For example, it uses the
sleep transistors in Cache Decay to deactivate zombie blocks.
Besides, EDBP gets recency information from the LRU cache
replacement policy to select zombie blocks. Finally, it directly
uses the existing voltage monitor in energy harvesting systems
to detect the capacitor voltage and tell when to detect and
deactivate zombie blocks. Except these, EDBP introduces
three registers and an SRAM buffer for voltage threshold
adjustment, and a simple comparator for each block to deter-
mine whether the block should be deactivated. In the default
setting (Table II), EDBP requires 256 comparators incurring
approximately 0.0098% of the core chip area (3.37 mm2,

including 0.80 mm2 data cache and 0.48 mm2 instruction
cache), with the core area size calculated using CACTI [61]
This featherweight design not only saves valuable silicon area
but also minimizes energy consumption that could arise from
extra circuitry.

C. True/False Rate

Figure 6 illustrates all four prediction scenarios and the
proportion of blocks that remain unpredicted. From this figure,
we find that Cache Decay cannot detect the occurrence of the
zombie blocks which thus leads to the high false positive rate.
To show this clearly, we call these false negatives caused by
zombie blocks as Missed Prediction (FN), which contributes
to 68.4% of predicted blocks. In contrast, EDBP can identify
these zombie blocks and deactivate them to lower the false
negative rate. The experimental results show that EDBP suc-
cessfully predicts 83.7% of cache blocks while maintaining an
accuracy rate of 82.5%.

However, the benefit brought by EDBP is not significant
since it can only handle zombie blocks. To allow the energy
harvesting systems to be able to address dead blocks as well,
EDBP must be integrated with existing dead block predictors.
This combined approach not only increases coverage but
also maintains a high accuracy of 78.3%, demonstrating the
benefits of integrating EDBP with the traditional predictor in
energy harvesting systems.

Although coverage and accuracy are important metrics to
evaluate EDBP, they do not directly indicate the system’s
overall energy efficiency and performance. The efficiency
and performance are influenced by the duration for which
blocks are deactivated; longer deactivation periods typically
result in larger energy savings. Even if EDBP can achieve
high coverage and accuracy, this does not necessarily mean
substantial energy reductions, as many blocks may only be
deactivated briefly. To better evaluate EDBP, the following
sections will delve into a comprehensive analysis of the overall
energy efficiency and performance.

D. Energy Efficiency

Before evaluating the energy efficiency of different schemes,
we first present the energy consumption and average power
of the baseline system to provide a sense of the actual
values (Figure 9). The power and energy consumption vary

0

100
En

er
gy

%
Dcache Icache memory ckpt+rst other

adpcmd
adpcme

basicm
ath
dijkstra fft gsmd

gsme ifft jpegd
jpege

pegwitd
rijndaeld

rijndaele sha
susanc

susane
susans

gmean0
25

In
st

%
Load Store

Fig. 7: Energy Breakdown and store/load percentage on the RFHome trace. There are five bars for each application. From left
to right: NVSRAMCache, SDBP, Cache Decay, EDBP, Cache Decay+EDBP.

1.00
1.25

Sp
ee

du
p

adpcmd
adpcme

basicm
ath
dijkstra fft gsmd

gsme ifft jpegd
jpege

pegwitd
rijndaeld

rijndaele sha
susanc

susane
susans

gmean0
25

M
iss

%

SDBP Cache Decay EDBP Cache Decay+EDBP Ideal 80% Leakage Off

Fig. 8: Performance and cache miss rate on the RFHome trace. Speedup is normalized to NVSRAMCache.

ad
pc

m
d

ad
pc

m
e

ba
sic

m
at

h
di

jk
st

ra fft
gs

m
d

gs
m

e iff
t

jp
eg

d
jp

eg
e

pe
gw

itd
rij

nd
ae

ld
rij

nd
ae

le
sh

a
su

sa
nc

su
sa

ne
su

sa
ns

gm
ea

n

101

102

En
er

gy
(J)

2

3

Po
we

r(m
W

)

Fig. 9: Absolute average power (red line) and total energy
(yellow bar) of NVSRAMCache.

across different applications, averaging 2.58 mW and 100.5
J , respectively.

In Figure 7, we evaluate the energy consumption of all
schemes, normalized to NVSRAMCache on the RFHome
trace. The total consumption is divided into four parts: cache,
memory, checkpoint/restoration, and others (e.g., capacitor
leakage and computing). In the baseline architecture, the
data and instruction cache are the most energy-consuming
components, accounting for 12.5% and 58.0% of the total
energy, respectively. The high energy consumption of the
instruction cache stems from the costly access operations of
the ReRAM cache.

Compared to the baseline, SDBP achieves only around 1.3%
of total energy reduction. There are three reasons explaining
the poor energy efficiency of SDBP. First, unlike the baseline
NVSRAMCache, which only saves dirty cache blocks, SDBP
increases the energy requirements for both checkpointing and
restoration. Second, if the dead block prediction result in
SDBP is false negative, i.e., treating a live block as dead, the
energy spent on the checkpoint and restoration of associate
data block becomes wasted. Third, even if the prediction is
correct, the reuse happens far in the future spanning multiple

power cycles, which leads to unnecessary static energy costs
in maintaining these blocks active in the cache.

In contrast, EDBP can save 6.5% of total energy compared
to the baseline, and together with Cache Decay, achieves
an 9.8% energy savings. This promising energy reduction
attributes to EDBP detects and deactivates zombie blocks
without incurring higher cache misses and associated memory
accesses. The experimental results show that the combined ap-
proach only raises memory consumption slightly, from 13.8%
to 15.6%.

E. Performance

We evaluate the overall performance of EDBP and other
schemes across a variety of benchmarks as shown in Figure
8. The results demonstrate that EDBP and Cache Decay
consistently outperform the baseline due to their enhanced
ability to save energy from cache leakage reduction. Across
all benchmarks, Cache Decay and EDBP achieve an average
of 5.9% and 6.9% improvement over the baseline architecture
respectively. Moreover, the combined approach of EDBP and
Cache Decay further improves the performance to 11.9% com-
pared to the baseline. These experimental results prove that
EDBP can effectively enhance both the baseline architecture
and existing dead block predictors.

Figure 8 also shows the baseline with 80% data cache leak-
age reduction (i.e., data cache leakage magically reduced by
80% without impacting the cache hit rate) and the maximum
performance achievable by dead block predictors (marked as
Ideal in the figure). With 80% data cache leakage reduction,
the baseline performance improves by 11.4%, which is com-
parable to the performance achieved by the combination of
EDBP and Cache Decay. In the ideal scenario, we assume
perfect knowledge about which cache blocks will become dead
or zombie. With this in mind, we magically turn off these

LRU DRRIP0.8
0.9
1.0
1.1
1.2

Sp
ee

du
p

SDBP
Cache Decay

EDBP
Cache Decay+EDBP

Fig. 10: Cache replacement.

256B 512B 1kB 2kB 4kB 8kB 16kB
0.6
0.8
1.0
1.2

Sp
ee

du
p

SDBP
Cache Decay

EDBP
Cache Decay+EDBP

80% Leakage Off

Fig. 11: Cache size.

Direct-map 2-way 4-way 8-way0.8
0.9
1.0
1.1

Sp
ee

du
p

SDBP
Cache Decay

EDBP
Cache Decay+EDBP

Fig. 12: Cache associativity.

ReRAM FeRAM STTRAM0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

Sp
ee

du
p

Fig. 13: NVM technology.

2MB 4MB 8MB 16MB 32MB0.800.850.900.951.001.051.101.151.20

Sp
ee

du
p

Fig. 14: Memory size.

thermal solar RFOffice RFHome0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

Sp
ee

du
p

Fig. 15: Energy conditions.

0.47uF4.7uF 10uF 16uF 47uF100uF 1mF0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

Sp
ee

du
p

Fig. 16: Capacitor size.

Fig. 17: Sensitivity: simulated on RFHome trace. Normalized to NVSRAMCache with default settings in Table II.

blocks to generate the theoretical optimal performance. The
experimental results demonstrate that the ideal performance
achieves a 14.4% improvement over the baseline and out-
performs Cache Decay by 8.5%. Fortunately, by integrating
EDBP to Cache Decay, the performance gap becomes the ideal
predictor and the combined approach is much smaller (2.5%).
These findings underscore EDBP’s effectiveness in boosting
the performance of existing dead block predictors, pushing
them closer to their theoretical maximum boundary.

F. Cache Miss Rate

Figure 8 also shows the data cache miss rate after applying
Cache Decay and EDBP. EDBP alone increases the miss rate
from 2.1% to 3.7%, and the combination of EDBP and Cache
Decay raises it to 3.9%. Since the benefit brought by EDBP
is higher than the cache miss penalty, it ultimately improves
overall system energy efficiency and performance.

G. Load and Store Instruction Ratio

Figure 7 illustrates the load/store ratio as a percentage of
total committed instructions. This ratio is a key factor influ-
encing the effectiveness of dead block predictors and EDBP.
A high load/store ratio results in increased cache accesses,
reducing the number of dead and zombie blocks. Conversely,
a low ratio indicates fewer cache accesses, providing more
opportunities for dead block predictors and EDBP to identify
and deactivate dead or zombie blocks. As shown in the
figure, the load/store ratios for Mibench and Mediabench are
relatively low, enabling dead block predictors and EDBP to
achieve strong performance.

H. Sensitivity Analysis

1) Cache Replacement Policies: The performance of EDBP
depends on the cache replacement policy’s ability to identify
suitable blocks for deactivation. Different policies impact
EDBP’s performance differently. For example, a naive policy
like LRU is more likely to select incorrect zombie blocks,
resulting in higher cache miss penalties for EDBP. In contrast,
a more sophisticated policy like DRRIP reduces cache miss
penalties, improving EDBP ’s performance. To demonstrate
the robustness of EDBP across different cache replacement

policies, we evaluated it with both a naive (LRU) and a
sophisticated (DRRIP) policy. As shown in Figure 10, the
sophisticated policy significantly boosts EDBP’s performance
(17.1% improvement over the baseline with DRRIP, compared
to 6.91% with LRU) by reducing the likelihood of treating
live blocks as zombies. Thus, EDBP remains compatible and
robust across various cache replacement policies.

2) Cache Size: We evaluate the sensitivity of EDBP to
different cache sizes, ranging from 256B to 16KB as presented
in Figure 11. The speedup is normalized to NVSRAMCache
with 4kB 4-way caches. The results illustrate a clear trend
where increasing the cache size from 256B to 4KB leads to
substantial performance improvements. The reason is the re-
duction in cache misses, as a larger cache can buffer more data
and thus reduce the frequent accesses to the slower and more
energy-consuming NVM. However, when the cache size is
further increased to 8kB and 16KB, the performance gains of
the baseline degrades by 6.2% and 21.3% respectively. This is
mainly caused by the increased leakage power associated with
the larger caches, which offsets the benefits of the reduction in
cache misses. Fortunately, EDBP reduces this high cache leak-
age and achieves 11.1% and 11.7% improvement for 8kB and
16kB caches respectively. Moreover, the combined approach
further improves performance to 16.8% and 23.4% compared
to the baseline using 4kB cache (the tallest bar in Figure 11).
Therefore, with the help of EDBP, energy harvesting systems
can effectively utilize larger caches to enhance performance,
thereby addressing the dilemma outlined in Section II.

3) Cache Associativity: We evaluate the impact of cache
associativity on the performance of EDBP by varying the
associativity from direct-mapped to 8-way caches as depicted
in Figure 12. The speedup is normalized to NVSRAMCache
with 4kB 4-way caches. For the direct-mapped caches, EDBP
simply sets one voltage threshold that deactivates all blocks.
The results show that increasing the associativity from direct-
mapped to 2-way yields a noticeable performance boost. For
example, the performance of EDBP increases from -0.01% to
5.7% and the performance of the combined approach increases
from 7.5% to 11.3%. Further increasing the associativity to a
4-way only provides marginal gains (only 0.6% for EDBP and
0.8% for the combined approach). When further increasing to

8-way, the performance of all schemes starts to decline due
to the increased cache access consumption associated with
high associativity. The experimental results require us to pick
the most suitable associativity (i.e., 4-way) to achieve the
performance for energy harvesting systems. Overall, EDBP
and the combined approach always demonstrate promising
performance across different associativity levels, confirming
its adaptability and efficiency in various cache configurations.

4) NVM Technology: NVM technology significantly im-
pacts the efficiency and performance of EDBP and other dead
block predictors. Different NVM types’ access latencies and
energy consumption influence the cache miss penalties. To see
the robustness of EDBP, we evaluate the sensitivity of EDBP
and Cache Decay to different NVM technologies, including
ReRAM, FeRAM, and STTRAM, to understand their impact
on performance as shown in Figure 13. ReRAM, with its
relatively low latency and energy consumption, incurs low
cache miss penalties which thus provides the best performance
improvements for the combined approach (11.9% over base-
line). On the contrary, STTRAM requires much higher access
latency and energy, making the cache miss penalties more
expensive. As a result, the combined approach can only help
the system to achieve a 9.7% performance gain. Despite these
variations, both EDBP and Cache Decay consistently enhance
system performance across different NVM technologies.

5) Memory Size: Memory size is another important factor
impacting the effectiveness of EDBP. Larger memory sizes
come with higher access latencies and increased energy over-
head during reads and writes, which can amplify the cache
miss penalty of dead block predictors. To assess EDBP’s
robustness, we evaluate its sensitivity to different memory
sizes, as shown in Figure 14. Our experiments show that
smaller memory sizes provide better performance for EDBP
due to lower cache miss penalties, while larger memory sizes
are less favorable. When the memory size increases from 2MB
to 32MB, EDBP’s speedup decreases from 7.8% to 6.7%.
Similarly, the combination of EDBP and Cache Decay sees
a performance drop, from 13.6% to 11.1%.

6) Energy Conditions: Energy conditions play a crucial
role in determining the performance of energy harvesting
systems (Section II). To evaluate the sensitivity of EDBP
to varying energy conditions, we test it under four different
conditions. The results, depicted in Figure 15, illustrate that
EDBP consistently improves the baseline architecture across
all energy conditions. In stable and high-energy environments,
EDBP has fewer opportunities to reduce leakage as the fre-
quency of power interruptions is low. However, in unstable
and low-energy conditions, the frequency of power outages
increases so that EDBP has more opportunities to reduce cache
leakage and thus shows significant performance improvements
over the baseline. For instance, on the thermal trace, EDBP
increases the performance gain by 5.6%, while on the RFHome
trace, it enhances performance by 6.9%. Additionally, the
combined approach shows substantial improvements across
various energy conditions, achieving a 10.4% performance
increase on the thermal trace and 11.9% on the RFHome trace.

D-pred (D+I)-pred0
20
40
60
80

100
120
140

En
er

gy
 %

Dcache
Icache

memory
ckpt+rst

other

0

1

Sp
ee

du
p

Fig. 18: Energy Breakdown (bars) and speedup (dots) on the
RFHome trace. There are five bars for each design choice
on the x-axis. From left to right: NVSRAMCache, SDBP,
Cache Decay, EDBP, Cache Decay+EDBP. Energy and
speedup are normalized to NVSRAMCache.

7) Capacitor Size: The capacitor size directly influences
the frequency and duration of power interruptions in energy
harvesting systems, which in turn affects overall performance,
particularly for weak energy sources like RF. Larger capacitors
can store more energy, reducing the frequency of power
outages and allowing the system to have longer power cycles.
However, larger capacitors also require longer charging times
and cause higher leakage currents. Conversely, smaller capac-
itors have shorter charging times and lower leakage power but
make the system more susceptible to power interruptions, as
they drain quickly and lead to frequent power outages.

To assess the influence of different capacitor sizes on
EDBP’s performance, we conducted a comprehensive sensi-
tivity analysis. The results, depicted in Figure 16, show that
EDBP enhances the baseline architecture’s performance across
all tested capacitor sizes. We also find that the effectiveness of
EDBP decreases as the capacitor size increases. For instance,
when increasing the capacitor size from 0.47 µF to 100
µF , the performance of EDBP also degraded from 7.5% to
1.6%. This outcome aligns with our expectations, as larger
capacitors store more energy, supporting longer power cycles
and consequently reducing the frequency of power outages.
This reduction in power outages diminishes the opportunities
for EDBP to effectively reduce cache leakage and enhance
performance. Similarly, Cache Decay also experiences di-
minished performance gains with larger capacitors. This is
because the energy stored in larger capacitors allows some
smaller applications, such as fft and ifft, to complete without
experiencing power outages. As a result, these applications do
not benefit from reduced halting times for recharging, limiting
Cache Decay’s opportunities to enhance performance through
reduced cache leakage.

I. EDBP for Instruction Cache

So far, we have demonstrated EDBP’s ability to reduce
leakage power in the SRAM data cache. This section explores
its effectiveness on the instruction cache. Since the original
ReRAM-based instruction cache is not a target for EDBP, we
first introduce a new baseline architecture using SRAM for
both caches, with the rest of the settings unchanged (Section
VI). We then compare the impact of applying EDBP to the data

cache only versus both the data and instruction caches. Figure
18 presents the energy breakdown and speedup for the new
baseline and other schemes, with two design choices (applying
the dead block predictor to the data cache only or to both
caches) shown on the x-axis.

In the new baseline, the data and instruction caches consume
24.9% and 18.3% of the total energy, respectively. Applying
EDBP to the data cache reduces its consumption by 10%, and
when combined with Cache Decay, this reduction increases
to 17.7%. Overall, EDBP alone saves 16.1% of total energy,
while the integration with Cache Decay boosts savings to
23.3%. Similarly, when EDBP is applied to both data and in-
struction caches, the energy consumption of caches is reduced
by 22.8%. When integrated with Cache Decay, this reduction
increases to 28.4%. In total, EDBP saves 22.4% of energy, and
when combined with Cache Decay, achieves 28.2% savings.

Figure 18 also illustrates the performance of the new
baseline and other schemes. Enabling EDBP for the data cache
alone results in a 22.9% improvement over the new base-
line while applying EDBP to both caches achieves a 31.7%
performance boost. Additionally, the combination of EDBP
and Cache Decay for the data cache increases performance to
33.6%, and their application to both caches further enhances
performance to 42.5%. Therefore, EDBP is also effective for
the SRAM instruction cache.

VII. DISCUSSION

A. Integration with Other Dead Block Predictors

Although our evaluation only shows the integration of
EDBP with Cache Decay, it does not lose generality that
EDBP can also seamlessly integrate with other existing predic-
tors [2], [74] to detect zombie blocks caused by power outages
and further enhance energy efficiency in energy harvesting
systems. The reason is that all these dead block predictors
never consider zombie blocks that are caused by power outages
in energy harvesting systems.

B. Integration with Other Energy Harvesting Systems

Although the default baseline architecture used in this paper
is JIT checkpointing (i.e., NVSRAMCache), EDBP maintains
its effectiveness across a variety of energy harvesting systems
[3], [4], [21], [29], [36], [37], [56], [65], [66], [68], [71],
[73], [76]. No matter in which energy harvesting systems, as
long as they have volatile caches, they will anyway suffer
performance degradation due to the zombie blocks caused by
power outages. EDBP is designed to detect and deactivate
these zombie blocks to reduce energy waste and achieve higher
performance.

VIII. LIMITATIONS

As discussed in Section VI-H6 and VI-H7, EDBP is highly
affected by two design configurations. The first one is energy
conditions. When the energy condition is stable and sufficient,
each power cycle lasts longer, allowing more program exe-
cution before a power outage. Consequently, power outages

are less frequent for the program, providing fewer opportu-
nities for EDBP to deactivate zombie blocks and enhance
performance. In an extreme scenario where the energy supply
is infinite, no power outages and zombie blocks will occur,
so EDBP never starts to work making it useless to improve
performance. The second design configuration is the capacitor
size. A large capacitor buffers enough energy to support longer
power cycles and diminish the frequency of power outages.
As a result, EDBP has fewer opportunities for zombie block
deactivation, which thus makes it unable to provide significant
benefits to improve performance.

However, it is important to note that the aforementioned
scenarios—consistently good energy conditions and large
capacitors—are not typical in most energy harvesting systems,
especially in RF-based systems [5], [16], [27], [43], [46],
[47], [58], [59], [64], [69], [75]. Due to the unstable and
unpredictable nature of RF energy sources, energy harvesting
systems frequently experience power outages. Moreover, these
energy harvesting systems are often designed to be compact
with low hardware overhead. Thus, a small capacitor requiring
less hardware area is more suitable for these systems [4].
Although EDBP might show reduced performance in the
aforementioned scenarios, its design is well-suited to the more
common, challenging environments faced by typical energy
harvesting systems.

IX. RELATED WORK

Researchers have developed various dead block predictors
tailored for different purposes, including cache prefetching,
cache replacement, and cache leakage power reduction, aimed
at enhancing overall performance and energy efficiency.

Lai et al. [38] pioneered the concept of dead block pre-
diction with their trace-based dead block predictor, known as
RefTrace, for the L1 cache. RefTrace identifies dead blocks
by comparing the memory reference sequences of each block
with recorded traces that lead to dead blocks. If the comparison
matches, it indicates that the cache block is dead. Otherwise,
RefTrace still treats it as a live block. Achieving this design
requires two hardware tables, i.e., one for recording the
reference sequence of each block and the other for storing
the access sequences associated with dead blocks.

Kharbutli and Solihin subsequently introduced a counting-
based dead block predictor [34]. The fundamental idea is to
consider a cache block as dead once its access count reaches
a certain threshold. To achieve this, each cache block is
augmented with a counter that tracks both the number of times
the block has been referenced and the program counter (PC)
that first missed on the block. When a counter reaches the
threshold value, the associated block is predicted to be dead.
The challenge of this work lies in determining an appropriate
counter threshold for each cache block. A simple approach
is to use a fixed threshold for all blocks; however, this may
not be optimal, as the access count varies across blocks. To
address this issue, the authors propose an adaptive technique
that dynamically adjusts the counter threshold to be suitable
for each cache block.

Kaxiras et al. introduced a time-based dead block predictor
called Cache Decay [32], which considers a cache block as
dead if it has not been accessed within a certain time period
since its last access. Cache Decay uses a clock counter as
a timer for each cache block. When the counter reaches
its maximum value, the associated block is treated as dead
and deactivated via gate-Vdd [52]. A key challenge here
is implementing the clock counter efficiently to avoid high
energy consumption that could offset the savings from reduced
cache leakage. To this end, the authors utilize a global counter
in combination with a 2-bit counter for each cache block. The
global counter increments with every clock cycle and signals
all 2-bit counters to increment when they reach their maxi-
mum. If a 2-bit counter reaches its maximum, the correspond-
ing block is marked as dead. However, if the block is accessed
before this, its 2-bit counter is reset. Like the counting-based
predictor, Cache Decay also faces the challenge of determining
an appropriate time threshold. A straightforward approach is
to select a fixed threshold empirically and apply it throughout
execution, but this may yield suboptimal energy savings. To
overcome this, the authors employ an adaptive technique for
dynamically adjusting the threshold for each block.

Adaptive Mode Control (AMC) [74] is a time-based dead
block predictor similar to Cache Decay, with dynamically
adjustable time intervals for each cache block. To achieve
this, AMC monitors extra cache misses that occur due to
block deactivation and uses it to guide the time interval
adjustment. If the extra cache miss rate is too high, i.e., AMC
is too aggressive in deactivating cache blocks, the system must
enlarge the time interval allowing more time to check whether
a block is a true dead block. On the contrary, if the miss rate
is low, AMC will shrink the time interval. For this purpose,
AMC keeps the tag array active to track these misses.

Although the aforementioned previous works achieve effec-
tive dead block prediction, none of them is directly applicable
to energy harvesting systems due to the lack of considera-
tion on the frequent power failure and the resulting zombie
blocks—that can easily fool the existing dead block predictors.
The beauty of EDBP is that it can serve as a complementary
solution to help them take care of zombie blocks with no
hassle, thereby improving the performance.

X. CONCLUSION

This paper found out that existing dead block predictors do
not effectively work for energy harvesting systems. That is
because their frequent power failure turns many cache blocks
into zombie blocks that have no reuse before the failure and
thus waste hard-won energy in vain. With that in mind, we
proposed EDBP that can detect and deactivate the zombie
blocks in a precise and lightweight manner. EDBP works
well in combination with the existing dead block predictors,
creating a synergistic effect on the reduction of cache leakage
energy consumption that accounts for a considerable portion
of harvested energy. Consequently, EDBP can significantly
improve the energy efficiency and the performance of energy
harvesting systems.

ACKNOWLEDGEMENTS

We appreciate anonymous reviewers and our shepherd for
their invaluable comments and constructive feedbacks. We also
thank Jianping Zeng for helping with some of the rebuttal
response as well as Sikang Sun and Dongho Choi for their
contributions to analyzing some existing dead block predictors
on our simulator. This work was supported by NSF grants
2001124, 2153749, and 2314681.

REFERENCES

[1] H. Aantjes, A. Y. Majid, and P. Pawełczak, “A testbed for transiently
powered computers,” in arXiv preprint arXiv:1606.07623 (2016), 2016.

[2] J. Abella, A. González, X. Vera, and M. F. P. O’Boyle, “Iatac:
a smart predictor to turn-off l2 cache lines,” ACM Trans. Archit.
Code Optim., vol. 2, no. 1, p. 55–77, mar 2005. [Online]. Available:
https://doi.org/10.1145/1061267.1061271

[3] A. Abulila, I. E. Hajj, M. Jung, and N. S. Kim, “Asap: architecture
support for asynchronous persistence,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 306–319.

[4] M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Solihin, “Bbb:
Simplifying persistent programming using battery-backed buffers,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021, pp. 111–124.

[5] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems,” in IEEE Embedded
Systems Letters 7, 1 (2014), 15–18, 2014.

[6] S. Beeby and N. White, “Energy harvesting for au-
tonomous systems,” in Artech House, Incorporated.
https://books.google.fr/books?id=7H9xdFd4sikC, 2014.

[7] R. G. Belloco, A. G. Macapayad, R.-A. C. O. Calimpusan, and J. T.
Dellosa, “Development of an integrated hybrid energy harvesting system
for wireless sensor network applications using 180nm cmos process
technology,” in 2024 IEEE Symposium on Industrial Electronics &
Applications (ISIEA). IEEE, 2024, pp. 1–6.

[8] A. Bhattacharyya, A. Somashekhar, and J. S. Miguel, “Nvmr:
Non-volatile memory renaming for intermittent computing,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1–13. [Online]. Available:
https://doi.org/10.1145/3470496.3527413

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[10] J. Bito, R. Bahr, J. G. Hester, S. A. Nauroze, A. Georgiadis, , and
M. M. Tentzeris, “A novel solar and electromagnetic energy harvesting
system with a 3-d printed package for energy efficient internet-of- things
wireless sensors,” in IEEE Transactions on Microwave Theory and
Techniques 65, 5 (2017), 2017, pp. 1831–1842.

[11] P. Cahill, R. O’Keeffe, N. Jackson, A. Mathewson, , and
V. Pakrashi, “Energy-harvesting thermoelectric sensing for unobtru-
sive water and appliance metering,” in In Proceedings of the 2nd
International Workshop on Energy Neutral Sensing Systems, EN-
Ssys ’14, Memphis, Tennessee, USA, November 6, 2014. 7–12.
https://doi.org/10.1145/2675683.2675692, 2014.

[12] P. Cahill, R. O’Keeffe, N. Jackson, A. Mathewson, , and V. Pakrashi,
“Structural health monitoring of reinforced concrete beam using piezo-
electric energy harvesting system,” in In EWSHM-7th European work-
shop on structural health monitoring, 2014.

[13] S. Cao and J. Li, “A survey on ambient energy sources and harvesting
methods for structural health monitoring applications,” in Advances in
Mechanical Engineering 9, 4 (2017), 2017.

[14] Q. Cheng, Z. Peng, J. Lin, S. Li, , and F. Wang, “Energy harvesting
from human motion for wearable devices,” in 10th IEEE International
Conference on Nano/Micro Engineered and Molecular Systems. IEEE,
2015, p. 409–412.

[15] J. Choi, Q. Liu, and C. Jung, “Cospec: Compiler directed specula-
tive intermittent computation,” in In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 399–412,
2019.

https://doi.org/10.1145/1061267.1061271
https://doi.org/10.1145/3470496.3527413

[16] J. Choi, J. Zeng, D. Lee, C. Min, and C. Jung, “Write-light cache
for energy harvesting systems,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, ser. ISCA ’23.
New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3579371.3589098

[17] Y.-W. Chong, W. Ismail, K. Ko, , and C.-Y. Lee, “Energy harvesting for
wearable devices: A review,” in IEEE Sensors Journal 19, 20 (2019),
2019, p. 9047–9062.

[18] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[19] G. Fang, J. Choi, and C. Jung, “Hybrid power failure recovery for
intermittent computing,” in ACM/IEEE International Conference on
Computer-Aided Design (ICCAD), 2024.

[20] T. Galchev, J. McCullagh, R. Peterson, and K. Najafi, “A vibration
harvesting system for bridge health monitoring applications,” in In Proc.
PowerMEMS, 2010, p. 179–182.

[21] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen,
and T. F. Wenisch, “Persistency for synchronization-free regions,” ACM
SIGPLAN Notices, vol. 53, no. 4, pp. 46–61, 2018.

[22] M. Gorlatova, J. Sarik, G. Grebla, M. Cong, I. Kymissis, , and G. Zuss-
man, “Movers and shakers: Kinetic energy harvesting for the internet of
things,” in ACM international conference on Measurement and modeling
of computer systems, 2014, p. 407–419.

[23] Y. Gu, Y. Liu, Y. Wang, H. Li, and H. Yang, “Nvpsim: A simulator for
architecture explorations of nonvolatile processors,” in 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC), 2016, pp.
147–152.

[24] A. Gunti, D. K. Biswas, I. Mahbub, P. R. Adhikari, and R. C. Reid,
“Highly efficient rectifier and dc-dc converter designed in 180 nm cmos
process for ultra-low frequency energy harvesting applications,” in 2020
IEEE 14th Dallas Circuits and Systems Conference (DCAS). IEEE,
2020, pp. 1–5.

[25] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative em-
bedded benchmark suite,” in In Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No.
01EX538). IEEE, 3–14, 2001.

[26] S.-Y. Huang, J. Zeng, X. Deng, S. Wang, A. Sifat, B. Bharmal, J.-B.
Huang, R. Williams, H. Zeng, and C. Jung, “Rtailor: Parameterizing soft
error resilience for mixed-criticality real-time systems,” in 2023 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2023, pp. 344–357.

[27] H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low
overhead hw/sw approach for enabling computations across power
cycles in transiently powered computers,” in In 2014 27th International
Conference on VLSI Design and 2014 13th International Conference on
Embedded Systems. IEEE, 330–335, 2014.

[28] H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low
overhead hw/sw approach for enabling computations across power cycles
in transiently powered computers,” in In VLSI Design. IEEE Computer
Society, 330–335, 2014.

[29] J. Jeong, J. Zeng, and C. Jung, “Capri: Compiler and architecture support
for whole-system persistence,” in Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed Computing,
2022, pp. 71–83.

[30] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. Leung, ,
and Y. L. Guan, “Wireless energy harvesting for the internet of things,”
in IEEE Communications Magazine 53, 6 (2015), 2015, p. 102–108.

[31] E. Kamenar, S. Zelenika, D. Blažević, S. Maćešić, G. Gregov,
K. Marković, , and V. Glažar, “Harvesting of river flow energy for
wireless sensor network technology,” in Microsystem Technologies 22,
7 (2016), vol. 22, 2016.

[32] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting gener-
ational behavior to reduce cache leakage power,” in Proceedings 28th
Annual International Symposium on Computer Architecture, 2001, pp.
240–251.

[33] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith, “Passive wi-
fi: Bringing low power to wi-fi transmissions,” in In NSDI, Vol. 16.
151–164., 2016.

[34] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and
bypassing algorithms,” IEEE Transactions on Computers, vol. 57, no. 4,
pp. 433–447, 2008.

[35] H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, J. Lee, and C. Jung,
“Compiler-directed soft error resilience for lightweight gpu register file

protection,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 989–
1004.

[36] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 2017, pp. 481–493.

[37] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen,
and T. F. Wenisch, “Delegated persist ordering,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–13.

[38] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction dead-
block correlating prefetchers,” in Proceedings 28th Annual International
Symposium on Computer Architecture, 2001, pp. 144–154.

[39] C. Lee, M. Potkonjak, , and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in In Proceedings of 30th Annual International Symposium
on Microarchitecture. IEEE, 1997, p. 330–335.

[40] H. G. Lee and N. Chang, “Powering the iot: Storage-less and converter-
less energy harvesting,” in In Design Automation Conference (ASP-
DAC), 2015 20th Asia and South Pacific. IEEE, 124–129, 2015.

[41] W. S. Lee, H. Jayakumar, and V. Raghunathan, “When they are not
listening: Harvesting power from idle sensors in embedded systems,”
in In Proceeding of the 5th International Green Computing Conference
(IGCC), 2014.

[42] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency,”
in 2008 41st IEEE/ACM International Symposium on Microarchitecture,
2008, pp. 222–233.

[43] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John,
Y. Xie, J. Shu, and H. Yang, “Ambient energy harvesting nonvolatile
processors: From circuit to system,” in 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015, pp. 1–6.

[44] Y. Liu, J. Yue, H. Li, Q. Zhao, M. Zhao, C. J. Xue, G. Sun, M.-F.
Chang, and H. Yang, “Data backup optimization for nonvolatile sram
in energy harvesting sensor nodes,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 10, pp.
1660–1673, 2017.

[45] G. Lukosevicius, A. R. Arreola, and A. S. Weddell, “Using sleep
states to maximize the active time of transient computing systems,”
in Proceedings of the Fifth ACM International Workshop on Energy
Harvesting and Energy-Neutral Sensing Systems, ser. ENSsys’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
31–36. [Online]. Available: https://doi.org/10.1145/3142992.3142998

[46] K. Ma, X. Li, S. Li, Y. Liu, J. J. Sampson, Y. Xie, and V. Narayanan,
“Nonvolatile processor architecture exploration for energy-harvesting
applications,” IEEE Micro, vol. 35, no. 5, pp. 32–40, 2015.

[47] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan, “Architecture exploration for ambient energy
harvesting nonvolatile processors,” in In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
526–537, 2015.

[48] M. Magno and D. Boyle, “Wearable energy harvesting: From body
to battery,” in In 2017 12th International Conference on Design and
Technology of Integrated Systems In Nanoscale Era (DTIS). IEEE,
2017, pp. 1–6.

[49] M. Magno, D. Kneubuhler, P. Mayer, and L. Benini, “Micro kinetic
energy harvesting for autonomous wearable devices,” in In 2018 Inter-
national symposium on power electronics, electrical drives, automation
and motion (SPEEDAM). IEEE, 2018, p. 105–110.

[50] M. Megahed and T. Anand, “A sub-µw energy harvester architecture
with reduced top/bottom plate switching loss achieving 80.66% peak
efficiency in 180-nm cmos,” IEEE Journal of Solid-State Circuits,
vol. 58, no. 5, pp. 1386–1399, 2023.

[51] G. Park, T. Rosing, M. D. Todd, C. R. Farrar, and W. Hodgkiss, “Energy
harvesting for structural health monitoring sensor networks,” in Journal
of Infrastructure Systems 14, 1 (2008), vol. 14, 2008, p. 64–79.

[52] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-vdd: a circuit technique to reduce leakage in deep-submicron
cache memories,” in Proceedings of the 2000 International Symposium
on Low Power Electronics and Design, ser. ISLPED ’00. New York,
NY, USA: Association for Computing Machinery, 2000, p. 90–95.
[Online]. Available: https://doi.org/10.1145/344166.344526

https://doi.org/10.1145/3579371.3589098
https://doi.org/10.1145/3142992.3142998
https://doi.org/10.1145/344166.344526

[53] S. Priya and D. J. Inman, “Energy harvesting technologies,” vol. 21.
Springer, 2009.

[54] H. Rahmani and A. Babakhani, “A fully integrated electromagnetic en-
ergy harvesting circuit with an on-chip antenna for biomedical implants
in 180 nm soi cmos,” in 2016 IEEE SENSORS. IEEE, 2016, pp. 1–3.

[55] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on rfid-scale devices,” SIGARCH Comput.
Archit. News, vol. 39, no. 1, p. 159–170, mar 2011. [Online]. Available:
https://doi.org/10.1145/1961295.1950386

[56] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015, pp. 672–685.

[57] L. Rizzon, M. Rossi, R. Passerone, and D. Brunelli, “Wireless sensor
networks for environmental monitoring powered by microprocessors
heat dissipation,” in In Proceedings of the 1st International Workshop
on Energy Neutral Sensing Systems (ENSSys ’13). ACM, New York,
NY, USA, Article 8, 6 pages. https://doi.org/10.1145/2534208.2534216,
2013.

[58] F. Su, Y. Liu, Y. Wang, and H. Yang, “A ferroelectric nonvolatile
processor with 46mus system-level wake-up time and 14mus sleep time
for energy harvesting applications,” in IEEE Transactions on Circuits
and Systems I: Regular Papers 64, 3 (2016), 596–607, 2016.

[59] F. Su, K. Ma, X. Li, T. Wu, Y. Liu, and V. Narayanan, “Nonvolatile
processors: Why is it trending?” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, 2017, pp. 966–971.

[60] W. Sun, T. Tan, Z. Yan, D. Zhao, X. Luo, , and W. Huang, “Energy
harvesting from water flow in open channel with macro fiber composite,”
in AIP Advances 8, 9 (2018), vol. 8, 2018.

[61] D. Tarjan, S. Thoziyoor, and N. Jouppi, “Cacti 4.0,” 07 2006.
[62] C. Wang, N. Chang, Y. Kim, S. Park, Y. Liu, H. G. Lee, R. Luo, and

H. Yang, “Storage-less and converterless maximum power point tracking
of photovoltaic cells for a nonvolatile microprocessor,” in In Design
Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific.
379–384. https://doi.org/10.1109/ASPDAC.2014.6742919, 2014.

[63] H. Williams, M. Moukarzel, and M. Hicks, “Failure sentinels: Ubiqui-
tous just-in-time intermittent computation via low-cost hardware support
for voltage monitoring,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2021, pp. 665–
678.

[64] T. Wu, K. Ma, J. Hu, J. Xue, J. Li, X. Shi, H. Yang, and Y. Liu, “Reliable
and efficient parallel checkpointing framework for nonvolatile processor

with concurrent peripherals,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 70, no. 1, pp. 228–240, 2023.

[65] Z. Wu, K. Lu, A. Nisbet, W. Zhang, and M. Luján, “Pmthreads:
Persistent memory threads harnessing versioned shadow copies,” in
Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2020, pp. 623–637.

[66] S. Yadalam, N. Shah, X. Yu, and M. Swift, “Asap: A speculative
approach to persistence,” in 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2022, pp.
892–907.

[67] C.-W. Yau, T. T.-O. Kwok, C.-U. Lei, , and Y.-K. Kwok, “Energy
harvesting in internet of things. in internet of everything,” in IEEE
Communications Magazine 53, 6 (2015). Springer, 2018, p. 35–79.

[68] J. Zeng, “Compiler and architecture co-design for reliable computing,”
Ph.D. dissertation, Purdue University, 2024.

[69] J. Zeng, J. Choi, X. Fu, A. P. Shreepathi, D. Lee, C. Min, and C. Jung,
“Replaycache: Enabling volatile cachesfor energy harvesting systems,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 170–182. [Online]. Available:
https://doi.org/10.1145/3466752.3480102

[70] J. Zeng, S.-Y. Huang, J. Liu, and C. Jung, “Soft error resilience at near-
zero cost,” in Proceedings of the 38th ACM International Conference
on Supercomputing, 2024, pp. 176–187.

[71] J. Zeng, J. Jeong, and C. Jung, “Persistent processor architecture,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, 2023, pp. 1075–1091.

[72] J. Zeng, H. Kim, J. Lee, and C. Jung, “Turnpike: Lightweight soft error
resilience for in-order cores,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 654–666.

[73] J. Zeng, T. Zhang, and C. Jung, “Compiler-directed whole-system
persistence,” in Proceedings of the 51th Annual International Symposium
on Computer Architecture, 2024.

[74] H. Zhou, M. Toburen, E. Rotenberg, and T. Conte, “Adaptive mode
control: a static-power-efficient cache design,” in Proceedings 2001
International Conference on Parallel Architectures and Compilation
Techniques, 2001, pp. 61–70.

[75] Y. Zhou, J. Zeng, J. Jeong, J. Choi, and C. Jung, “Sweepcache:
Intermittence-aware cache on the cheap,” in MICRO-56: 56th Annual
IEEE/ACM International Symposium on Microarchitecture, 2023.

[76] Y. Zhou, J. Zeng, and C. Jung, “Lightwsp: Whole-system persistence
on the cheap,” in 2024 57th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2024, pp. 215–230.

https://doi.org/10.1145/1961295.1950386
https://doi.org/10.1145/3466752.3480102

	Introduction
	Energy Harvesting System Basics
	Motivation
	Zombie, Dead and Live Blocks
	Implementation
	Which Block to Deactivate
	When to Deactivate Zombie Blocks
	Voltage Values Determination

	Evaluation
	Methodology
	Simulator, Baseline, and Competitors
	Benchmarks, Traces, and Sensitivity Analyses

	Hardware Cost Analysis
	True/False Rate
	Energy Efficiency
	Performance
	Cache Miss Rate
	Load and Store Instruction Ratio
	Sensitivity Analysis
	Cache Replacement Policies
	Cache Size
	Cache Associativity
	NVM Technology
	Memory Size
	Energy Conditions
	Capacitor Size

	EDBP for Instruction Cache

	Discussion
	Integration with Other Dead Block Predictors
	Integration with Other Energy Harvesting Systems

	Limitations
	Related Work
	Conclusion
	References

