
Rethinking Prefetching for Intermittent Computing
Gan Fang

Purdue University
West Lafayette, IN, USA
fang301@purdue.edu

Jianping Zeng
Samsung Semiconductor

San Jose, CA, USA
jp.zeng@samsung.com

Aditya Gupta
Purdue University

West Lafayette, IN, USA
gupta742@purdue.edu

Changhee Jung
Purdue University

West Lafayette, IN, USA
chjung@purdue.edu

Abstract
Prefetching improves performance by reducing cache misses. How-
ever, conventional prefetchers are too aggressive to serve battery-
less energy harvesting systems (EHSs) where energy efficiency is
the utmost design priority due to weak input energy and the re-
sulting frequent outages. To this end, this paper proposes IPEX,
an Intermittence-aware Prefetching EXtension that can be inte-
grated into existing prefetchers on EHSs. IPEX aims to avert useless
prefetches by suppressing the prefetching of the cache blocks receiv-
ing no hit before their loss on power failure, which would otherwise
waste harvested energy. At a proper moment before an upcoming
outage, IPEX throttles the prefetch degree to target only those
blocks that are likely to be used before the outage. That way IPEX
saves energy and spends it on making further execution progress.
Experimental results show that on average, IPEX reduces energy
consumption by 7.86% (up to 21.64%) and improves performance
by 8.96% (up to 23.49%) compared to a conventional prefetcher.
ACM Reference Format:
Gan Fang, Jianping Zeng, Aditya Gupta, and Changhee Jung. 2025. Re-
thinking Prefetching for Intermittent Computing. In Proceedings of the
52nd Annual International Symposium on Computer Architecture (ISCA ’25),
June 21–25, 2025, Tokyo, Japan. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3695053.3731038

1 Introduction
Batteryless energy harvesting systems (EHSs) have been widely
used in many fields, e.g., Internet of Batteryless Things [2, 15, 43, 62,
126], waterway monitoring [63, 115], health and wellness tracking
[17, 18, 41, 103], and wearable technology [23, 32, 73, 90, 91], thanks
to their environmental-friendly, self-sustaining, and maintenance-
free [105] nature. EHSs harvest energy from ambient sources such
as radio frequency (RF), solar, and thermal power [1, 9, 16, 54, 55,
67, 74, 76, 81, 108, 122, 134]. Since these energy supplies are often
weak and unstable, the harvested energy is first piled up in a tiny
capacitor. EHSs (re)boot only when their capacitor is sufficiently
charged, die with power outages upon its depletion, and hibernate
to charge it again; these steps repeat during the lifetime of EHSs,
making their computation intermittent [84].

The intermittent computing is characterized by frequent outages
and the resulting short power cycle, i.e., a period from the reboot
time to the following outage. With the intermittence in mind, re-
searchers equip EHSs with nonvolatile memory (NVM) as main
memory and some crash consistency mechanism to ensure correct

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/2025/06
https://doi.org/10.1145/3695053.3731038

program execution across power failure [13, 31, 56, 57, 78, 127, 128,
130, 132, 133, 136, 137]. For example, nonvolatile processor (NVP)
[88] exploits just-in-time (JIT) checkpointing to save all volatile
registers—including program counter (PC)—in nonvolatile flip-flops
(NVFFs) before impending power failure so that when power comes
back, NVP resumes program execution from the failure point.

In the intermittent computing paradigm, the performance of
EHSs is highly affected by (1) input energy quality and (2) their own
energy efficiency. If the energy supply is strong, EHSs encounter
fewer power outages, keeping the core pipeline busy with ample
instructions. On the other hand, for a given amount of harvested
energy, the length of a power cycle hinges on how efficiently EHSs
utilize the energy. That is why energy efficiency is the utmost
priority in the design of EHSs where saved energy can be used to
make further execution progress, thus improving their performance.

To improve energy efficiency, NVP adopts a volatile cache whose
dirty cache blocks are JIT checked—alongwith all volatile registers—
for crash consistency [31, 128, 136]. Since the cache turns NVM
accesses—that are the most energy-consuming in EHSs—to much
cheaper SRAM accesses, it can save a considerable amount of en-
ergy and thus improve the performance of EHSs dramatically. Prior
work [128, 136] shows that on average, the EHSs backed with
volatile caches can achieve roughly a 90% energy consumption
reduction and a 8.5x speedup compared to a cache-free EHS.

256B 512B 1kB 2kB 4kB 8kB

0.5

1.0

Sp
ee

du
p

Speedup

20

40

Ca
ch

e 
Le

ak
. %

ICache and DCache Leak. %

Figure 1: Speedup over baseline (2kB each for ICache/DCache)
and cache leakage energy (over total energy consumption);
the leakage percentage accounts for both ICache/DCache.

However, EHSs can only afford small volatile caches, which re-
stricts potential performance gain. Figure 1 illustrates how a typical
EHS performs differently with cache size variation1; black curve
represents the trend of speedups over the 2kB baseline, i.e., 2kB
each for ICache and DCache. It turns out that while each cache size
increases from 256B to 8kB, the performance does not necessarily
improve. Once the cache size exceeds 2kB, the performance gain
starts to decline due to the increasing cache leakage energy; see
red curve in the figure. When ICache and DCache are both 8kB in
size, more than half of the total energy (54.38%) is wasted on their
leakage, offsetting the benefits of large caches. In light of this, IPEX
sets the default cache size to 2kB each for ICache and DCache so
that the best performance can be delivered as shown in Figure 1.

1Here, hardware prefetchers are disabled; Section 6 details simulation settings.

https://doi.org/10.1145/3695053.3731038
https://doi.org/10.1145/3695053.3731038
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731038


ISCA ’25, June 21–25, 2025, Tokyo, Japan Gan Fang, Jianping Zeng, Aditya Gupta, and Changhee Jung

Due to the limited cache capacity, EHSs experience frequent
cache misses, suffering significant pipeline stalls with long-latency
NVM accesses. That is because most EHSs rely on in-order cores 2

owing to their low-power design [8, 49, 54, 69, 81, 86–88, 113, 114,
123, 129, 131]. Hence, when cache misses occur, the core pipeline
has no choice but to wait for data being fetched from NVM. Since it
is way slower than DRAM, the pipeline stalls occupy a considerable
portion of the total execution time, impacting the overall perfor-
mance of EHSs. Figure 2 shows that for the default setting (2kB
ICache and 2kB DCache), 23.45% and 18.64% of the total execution
times are wasted due to ICache and DCache misses, respectively.
For pegwite and pegwitd, the stall time caused by DCache misses
goes beyond 60%, slowing down the pipeline substantially.

ad
pc

m
d

ad
pc

m
e

ba
sic

m fft
g7

21
d

g7
21

e
gm

ea
n

gs
m

d
gs

m
e iff
t

jp
eg

d
pa

tri
cia

pe
gw

itd
pe

gw
ite

qs
or

t
rij

nd
ae

ld
st

rin
gs

su
sa

nc
su

sa
ne

un
ep

ic
gm

ea
n0

20
40
60
80

St
al

l %

ICache DCache

Figure 2: The ratio of the pipeline stall time caused by cache
misses to the total program execution time.

To make the best use of a limited cache size, even embedded
processors, e.g., ARM Cortex M7 [7], use hardware prefetchers that
can reduce cache misses by fetching necessary data in advance to
the cache [3, 4, 11, 20, 21, 39, 50–52, 60, 61, 68, 70, 85, 93–96, 99–102,
107, 119]. Unfortunately, conventional prefetchers are not suitable
for EHSs, leading to potential energy waste and performance hit.
Suppose a cache block has already been prefetched to the cache
but not accessed yet. If power failure then occurs immediately, it
wipes out the entire cache, rendering the prefetch useless. Here,
EHSs would waste the energy—prefetching the block from NVM
to the cache—which could otherwise be used to progress further
for performance. Without solving this problem, it is practically
impossible for EHSs to take advantage of any form of prefetching.

In response, this paper introduces IPEX, an Intermittence-aware
Prefetching EXtension that can be integrated into any existing
prefetchers. The key insight of IPEX is that it is unnecessary to
prefetch those cache blocks whose reuse distance [34, 135] extends
beyond an upcoming power failure, i.e., they are unlikely to be
used before the failure. Taking that into account, IPEX dynami-
cally adjusts prefetch degree, i.e., the number of cache blocks to
be prefetched at a time, to suppress the useless prefetches in EHSs.
If IPEX perceives that a power outage expects to happen soon, it
lowers the degree such that only the data being accessed before the
outage can be prefetched into caches. That way IPEX effectively
reduces the energy waste caused by useless prefetches, leaving
more energy for execution progress. When EHSs reboot with their
capacitor charged enough, IPEX assumes sufficient input energy
and optimistically resets the prefetch degree to its original value,
trying to avoid NVM accesses with more aggressive prefetching.

Nevertheless, there are two issues that must be addressed to
bring IPEX into practice: (1) when to adjust a prefetch degree and

2Taming out-of-order cores for EHSs is beyond the scope of this paper.

(2) how large it should be. First, it is essential to determine the
optimal timing of adjusting the prefetch degree for maximal energy
saving. If the prefetch degree is adjusted late, i.e., too close to an
upcoming power outage, there may be a limited opportunity for
saving energy. On the contrary, adjusting the degree too early
can lead to more cache misses as it may throttle useful prefetch
operations. Second, IPEX should be able to accurately determine
the appropriate prefetch degree for a given power outage. This is
a daunting challenge due to the need for gauging how soon the
outage will occur. If the prefetch degree is set too low, EHSs risk
encountering more misses before power failure, i.e., data may not be
in the cache when they are needed. Conversely, if the degree is set
too high, some prefetched blocks may go unused before being lost
on power failure, which wastes energy and degrades performance.

V𝑚𝑎𝑥

𝑉𝑏𝑎𝑐𝑘𝑢𝑝

Large 
Prefetch 
Degree

Time

𝑉𝑡ℎ𝑟𝑒𝑠 Small 
Prefetch 
Degree

V𝑚𝑎𝑥

𝑉𝑏𝑎𝑐𝑘𝑢𝑝

Lazy throttling 
→ Avoid misses.

Time

𝑉𝑡ℎ𝑟𝑒𝑠2

𝑉𝑡ℎ𝑟𝑒𝑠1

Eager throttling 
→ More misses.

Figure 3: Varying prefetch degree
upon crossing one of 𝑉 thresholds.

To address the first
issue of when to ad-
just, IPEX reformulates
it as determining suit-
able voltage thresholds.
That is, IPEX increases
and decreases the prefetch
degree when the capac-
itor voltage crosses up
and down one of these
thresholds. IPEX begins
with empirical thresholds and dynamically adjusts them with feed-
back from the underlying prefetcher. For this purpose, IPEX mea-
sures a throttling rate, the proportion of the prefetch operations
throttled in each power cycle. At reboot time, IPEX adjusts the
voltage threshold based on the throttling rate of the prior power
cycle. A high rate implies that eager throttling occurred therein
with potentially more misses; this triggers IPEX to switch to lazy
throttling by lowering the threshold, e.g., from 𝑉𝑡ℎ𝑟𝑒𝑠1 to 𝑉𝑡ℎ𝑟𝑒𝑠2 in
Figure 3, producing more prefetches for cache miss reduction.

With the voltage threshold(s) in place, IPEX addresses the sec-
ond issue, i.e., prefetch degree determination, by tuning it during
program execution. According to capacitor voltage changes relative
to the threshold(s), IPEX determines the prefetch degree, which
strikes a balance between high performance and energy efficiency.
In other words, whenever the capacitor voltage drops below a spe-
cific threshold (approaching an outage), IPEX reduces the prefetch
degree to reflect that it should now issue fewer prefetches to save
the energy waste. In reverse, IPEX increases the prefetch degree
when the capacitor voltage rises above the threshold.

The experiments show that for 20 applications, IPEX reduces
energy consumption by 7.86% and improves performance by 8.96%
compared to conventional prefetchers. In summary, IPEX makes
the following contributions:

• It is the first to enhance prefetchers’ performance by consid-
ering the unique characteristics (i.e., frequent power outages)
of EHSs.

• It achieves promising energy saving (up to 21.64%) and per-
formance gain (up to 23.49%) over the conventional prefetcher.

• It needs only 4 registers per cache (0.0018% of core area in-
cluding ICache/DCache), since it reuses the existing prefetcher
hardware.



Rethinking Prefetching for Intermittent Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

2 Background and Motivation
2.1 Energy Harvesting System (EHS)
Due to the inherently unstable nature of the input energy, EHSs
run from the moment their capacitor is sufficiently charged till it is
depleted; EHSs then undergo a lengthy recharging period before
securing enough energy in their capacitors again [25–30, 37, 38, 46,
47, 79, 124]. Therefore, given a certain quality of the input energy,
EHSs’ energy efficiency becomes crucial in making the most of the
harvested energy with the overall recharging time and the running
time both lowered. The takeaway is that energy efficiency must
be the utmost design factor for EHSs to maximize their run-
time performance.

One way to improve energy efficiency is equipping EHSs with a
volatile SRAM cache. It effectively reduces the amount of accesses
to NVM by exploiting locality in user program. As a result, EHSs
can retrieve program data from the cache, which is way more
energy-efficient than accessing NVM. A notable instance of cache-
enabled EHSs is NVSRAMCache [8, 54, 81, 87, 88, 113, 114, 123]
that achieves a drastic speedup (8.5x) over the cache-free baseline
with a real RF power trace [128]. To ensure crash consistency for
the SRAM cache, when a voltage monitor detects upcoming power
failure, NVSRAMCache signals its backup/restoration controller to
JIT checkpoint (1) the dirty cache blocks in the SRAM cache to its
NVM counterpart [42, 71, 82] and (2) all volatile register values—
including program counter (PC)—to nonvolatile flip-flops (NVFFs)
[24, 72]. In the wake of the power failure, the controller reversely
restores all these checkpointed states, resuming the interrupted
program from the failure point.

Nonetheless, the maximum performance gain of cache-enabled
EHSs is technically capped. Figure 1 highlights that larger caches
would degrade the overall performance due to their increasingly sig-
nificant leakage power. Because of that, EHSs are typically equipped
with small caches, e.g., 2kB, and thus experience high cache miss
rates and the associated stalling costs as shown in Figure 2. Even
worse, during the stalling time, EHSs continuously drain energy
through leakage from various hardware components, e.g., the core
pipeline resources and caches, wasting hard-harvested energy and
resulting in suboptimal performance.

2.2 Exploration and Characterization for
Energy-Efficient Prefetching

A conventional approach to reducing the pipeline stalls caused by
cache misses is prefetching both instructions and data from main
memory to caches in advance. This enables the core pipeline to
quickly access instructions and data from the caches when needed.
This is also possible for EHSs, though they experience frequent
power failure, as their applications still exhibit some access patterns
within each power cycle.

However, prefetching is a speculative technique which inher-
ently carries the risk of misspeculation and the resulting penalty.
Those blocks prefetched into caches may never receive hits, wasting
hard-harvested energy which would otherwise be used to make
further execution progress. With that in mind, it is important to
carefully explore and characterize prefetchers so that EHS can uti-
lize them to the best advantage. To gain a deeper understanding

of the impact of prefetching in EHS, we first formulate the energy
waste caused by cache misses in the absence of prefetching, as
shown in Equation 1. The energy waste of a prefetch-free EHS
(𝐸𝑤𝑎𝑠𝑡𝑒_𝑛𝑜_𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑟 ) is solely caused by the system leakage en-
ergy during the stall times of handling the cache misses (𝐸𝑙𝑒𝑎𝑘 ).

𝐸𝑤𝑎𝑠𝑡𝑒_𝑛𝑜_𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑟 = 𝐸𝑙𝑒𝑎𝑘 (1)

𝐸𝑤𝑎𝑠𝑡𝑒_𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑟 =

{
0 , useful prefetch
𝐸𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ + 𝐸𝑙𝑒𝑎𝑘 , useless prefetch

(2)

Also, we formulate the energy waste yet with a simple sequen-
tial prefetcher enabled (𝐸𝑤𝑎𝑠𝑡𝑒_𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑟 ) as shown in Equation 2.
Here, if a prefetch contributes to cache hits, no energy is wasted
since it preventsmisses from being occurred. However, if a prefetched
block ends up being not used, energy waste comes from two parts:
fetching the block from memory to caches (𝐸𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ) and the sys-
tem leakage of the EHS during the stall times of handling the cache
miss (𝐸𝑙𝑒𝑎𝑘 ). Suppose a prefetcher has a probability 𝑃 of fetching
a useful cache block. To ensure that the prefetcher can enhance
the performance of EHSs, 𝐸𝑤𝑎𝑠𝑡𝑒_𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑟 must be smaller than
𝐸𝑤𝑎𝑠𝑡𝑒_𝑛𝑜_𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑟 . In other words, Inequality 3 has to hold, i.e.,
𝑃 is required to be at least 1 − 𝐸𝑙𝑒𝑎𝑘/(𝐸𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ + 𝐸𝑙𝑒𝑎𝑘 ) as shown
in Inequality 4.

(1 − 𝑃) ∗ 𝐸𝑤𝑎𝑠𝑡𝑒_𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑟 < 𝐸𝑤𝑎𝑠𝑡𝑒_𝑛𝑜_𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑟 (3)

𝑃 > 1 − 𝐸𝑙𝑒𝑎𝑘/(𝐸𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ + 𝐸𝑙𝑒𝑎𝑘 ) (4)

0 20 40 60 80 100
EPrefetch (pJ)

0
20
40
60
80

Pr
ob

ab
ilit

y 
% ELeak = 10 pJ

ELeak = 20 pJ
ELeak = 30 pJ
ELeak = 40 pJ
ELeak = 50 pJ

Figure 4: Relationship betweenmini-
mum required 𝑃 , 𝐸𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ , and 𝐸𝑙𝑒𝑎𝑘 .

The implication is that
as 𝐸𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ and 𝐸𝑙𝑒𝑎𝑘
change, the minimum
probability 𝑃 required
to make the prefetching
beneficial also changes
accordingly. The take-
away is that as illus-
trated in Figure 4, a
higher prefetch cost (𝐸𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ)
increases the minimum required probability 𝑃 , whereas higher leak-
age energy consumption (𝐸𝑙𝑒𝑎𝑘 ) reduces the probability. Based on
the default configuration of our EHS described in Section 6, the
minimum probability 𝑃 required for effective prefetching turns out
to be 46.04%. In particular, the observed probabilities of the EHS’
ICache and DCache prefetching useful cache blocks are 54.03% and
52.88%, respectively, and they are both greater than the minimum
required probability 𝑃 . This indicates that prefetching has potential
to benefit EHSs.

2.3 Challenge of Prefetching across Frequent
Power Outages

In addition to program behavior with recurring memory access pat-
terns, however, whether prefetched blocks are useful also depends
on when power failure occurs. If blindly applied, prefetching cannot
achieve optimal performance for EHSs. This is because all volatile
cache contents—including those prefetched blocks—are lost upon
power failure, rendering the prefetching useless if the prefetched
blocks do not receive any hits before the failure.

Figure 5 illustrates an example of useless prefetches in the pres-
ence of power interruptions. At time𝑇1, the prefetcher predicts that



ISCA ’25, June 21–25, 2025, Tokyo, Japan Gan Fang, Jianping Zeng, Aditya Gupta, and Changhee Jung

T1 T2

Use A 
(Hit)

Use B
(Miss)

B
Cache

T3

A B

Voltile Cache ExecutionNVM

AB
Cache

A B

Prefetch 
A,B

Prefetch 
A,B

Read 
B

Prefetch B is 
unused before 
power failure.

Figure 5: The inefficiency of existing prefetchers in the pres-
ence of power failure; the delay between generating the
prefetch operations and receiving the fetched cache blocks
is ignored for the sake of simplicity.

Blocks A and Bwill be needed soon, so it loads them into the volatile
cache (❶) to avoid potential cache misses. When the core pipeline
progresses to the point where Block A is desired, it retrieves the
prefetched data from the cache (hit) with no pipeline stall. Then, at
time 𝑇2, power failure occurs and wipes out all volatile data includ-
ing those stored in the cache, rendering the prefetching of Block B
useless and wasting harvested energy. Indeed, resuming from the
failure point, the core pipeline encounters a cache miss at time 𝑇3,
causing an expensive NVM read of Block B (❷), which would have
been absent if the power failure had not occurred. This is a severe
performance issue for EHSs as they experience frequent power
interruptions, i.e., many prefetch operations consume hard-won en-
ergy in vain becoming useless. The challenge here is that existing
prefetchers do not account for power interruptions, missing
valuable opportunities to eliminate costly NVM accesses for
EHSs.

3 IPEX Approach
3.1 Reconsidering the Timeliness of

Prefetching for Energy Harvesting Systems
To address the above challenge, IPEX for the first time reconsid-
ers the timeliness of prefetching for EHSs. If the expected use of
instructions or data falls within the current power cycle (i.e., a
period from the reboot time to the following power failure), then
it is all right for the core pipeline to proceed with prefetching as
usual. However, one should not prefetch them, provided their use is
anticipated beyond the current power cycle. The reason is that the
prefetched blocks are going to be lost anyway on the power failure
without receiving any hit. This again wastes the hard-harvested
energy which would otherwise be used to make further program
progress for better performance.

In response, IPEX takes into account frequent power outages
when making a decision on generating prefetch operations. Unlike
existing prefetchers [12, 19, 36, 53, 58, 59, 75, 92, 109, 110, 112, 120,
121] which only consider memory access patterns, IPEX adjusts a
prefetch degree, i.e., the number of cache blocks to be prefetched
at a time, according to not only program behavior but also power
outages. As a result, IPEX allows the desired data to be available
in caches at the right time while suppressing the issue of useless
prefetches. The upshot is that IPEX can realize the full potential
of prefetching for EHSs even in the presence of frequent power
outages.

3.2 Overview of IPEX
What makes IPEX stand out is the ability to dynamically throt-
tle existing prefetchers atop EHSs across frequent power outages
while maintaining performance. To achieve this, IPEX performs
bi-modal control of the underlying prefetcher, switching between
(1) energy saving mode and (2) high performance mode depending on
the likelihood of power failure. That is, when the capacitor voltage
falls below predefined thresholds, indicating potential power failure
in the near future, IPEX enters into energy saving mode where it
throttles the prefetchers by reducing the prefetch degree. As such,
IPEX avoids prefetching the cache blocks that are not likely to be
accessed before power loss, thus lowering energy waste. To prevent
IPEX from being stuck in energy saving mode unnecessarily long,
IPEX raises the prefetch degree once the capacitor voltage rises
above the thresholds, i.e., IPEX switches back to high performance
mode. This allows IPEX to reissue any prefetch operations that
were throttled earlier. Consequently, IPEX can balance between
energy saving and high performance.

T3 T4

Use B 
(Hit)

Use C
(Hit)

A
Cache

T5

A B C

Voltile Cache ExecutionNVM

BC
Cache

A B C

Prefetch 
B,C

Prefetch 
B,C

Prefetch 
A

T1

Prefetch 
A

Use A
(Hit)

T2

High Performance ModeEnergy Saving Mode

Degree=2Degree=1

Degree=2

Figure 6: The high-level workflow of IPEX; the delay between
generating the prefetch operations and receiving the data
blocks is ignored for the sake of simplicity.

To illustrate, Figure 6 provides an overview of how IPEX adapts
its prefetching to power failure. At time 𝑇1, IPEX perceives that
the power is about to be cut off and transitions to energy saving
mode. In this mode, IPEX proactively lowers the prefetch degree
from its original value (e.g., 2 in this example) to 1. This causes
IPEX to prefetch only Block A (❶), contributing to a cache hit at
time 𝑇2 while avoiding prefetching the unnecessary Block B or C—
since they are not going to be accessed before the impending power
failure. Upon power resumption at time 𝑇3, IPEX switches to high
performance mode, resets the prefetch degree to 2, and issues two
prefetch requests for Block B and C (❷). This allows their following
uses at times 𝑇4 and 𝑇5, respectively, to hit in the cache, avoiding
pipeline stalls and improving the performance.

4 Implementation Details
The goal of IPEX is tuning the prefetch degree on the fly in re-
sponse to anticipated power interruptions to unleash the potential
of prefetching for EHSs. For this purpose, IPEX addresses two key
technical questions: when to adjust the prefetch degree, i.e., on
what voltage thresholds should be (Section 4.1), and how to de-
termine the appropriate value of the prefetch degree (Section 4.2).
The following two sections detail how IPEX tackles each of these
questions, respectively.



Rethinking Prefetching for Intermittent Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

4.1 When to Adjust a Prefetch Degree
Recall that the first question can be translated into how to figure out
suitable voltage thresholds. However, identifying an optimal voltage
threshold is a challenging task not just due to (1) the difficulty of
using the capacitor voltage as a proxy of the likelihood of power
failure but also because of (2) the reliance on the energy harvesting
quality necessitating the threshold adaptation, i.e., there is no one-
size-fits-all approach.

First, setting the voltage threshold too high—called eager throt-
tling as the voltage is reached soon after reboot which is far from
upcoming failure—would lead to suboptimal performance resulting
from the insufficient number of prefetches being issued. Conversely,
setting the threshold too low—called lazy throttling as it is reached
near upcoming failure taking some time after reboot—might waste
hard-won energy on potential useless prefetch operations in the
meantime.

To address the aforementioned challenge, IPEX adopts an em-
pirical approach in the first place, by taking into account the real
energy conditions of EHSs. At reboot time, IPEX sets each voltage
threshold to an initial value that empirically performs best in our
evaluation, e.g., a voltage threshold is set to 3.3V (another to 3.25V)
as shown in Figure 9.

4.1.1 Adaptive Voltage Threshold Adjustment. Second, regardless
of power failure, a fixed voltage threshold may not perform the best
at all times due to the fluctuation of the energy harvesting quality,
even if no power failure occurs for the time being. As an example,
the capacitor voltage once falling below the threshold could rise
above it shortly afterward, in which case permanently throttling
prefetching would miss the opportunity to prefetch useful cache
blocks and thus degrade performance.

In response, IPEX introduces a simple yet effective technique that
can adaptively tune voltage thresholds based on a newly proposed
metric called throttling rate. It is denoted as 𝑃𝑡𝑟 = 𝑃𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑/𝑃𝑡𝑜𝑡𝑎𝑙
where 𝑃𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 represents the portion of throttled prefetches,
while 𝑃𝑡𝑜𝑡𝑎𝑙 indicates the sum of the number of issued prefetches
and the number of throttled prefetches. The rationale behind us-
ing 𝑃𝑡𝑟 is twofold: (1) when 𝑃𝑡𝑟 goes too high, i.e., over-throttling,
IPEX should lower the voltage thresholds so that it generates more
prefetching requests to achieve high performance; (2) on the con-
trary, if 𝑃𝑡𝑟 becomes so low, i.e., under-throttling, the voltage thresh-
olds should be raised to reduce potential energy waste possibly
caused by useless prefetches.

To compute 𝑃𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 and 𝑃𝑡𝑜𝑡𝑎𝑙 , IPEX collects necessary statis-
tics as the core pipeline is running. For this purpose, IPEX devises
four volatile registers, i.e., 𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 , 𝑅𝑡𝑜𝑡𝑎𝑙 , 𝑅𝑡𝑟 , and 𝑅𝑖𝑝𝑑 , for each
cache (ICache/DCache) to independently manage its prefetcher
based on its own statistics. The first three are 32-bit registers;
𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 and 𝑅𝑡𝑜𝑡𝑎𝑙 track 𝑃𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 and 𝑃𝑡𝑜𝑡𝑎𝑙 , respectively, while
𝑅𝑡𝑟 is a floating-point register and records the calculated throttling
rate. Finally, 𝑅𝑖𝑝𝑑 contains the initial prefetch degree (e.g., 2) and is
consulted by existing ICache/DCache prefetchers for them to set
up the prefetch degree at reboot time. That is, the prefetchers reset
their internal register called 𝑅𝑐𝑝𝑑 , that holds the current prefetch
degree, to their 𝑅𝑖𝑝𝑑 in the wake of power failure. In particular, 𝑅𝑖𝑝𝑑
requires only 3 bits as IPEX allows the maximal prefetch degree of
4 for typical EHSs.

With the help of these hardware structures, it becomes straight-
forward to compute 𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 and 𝑅𝑡𝑜𝑡𝑎𝑙 . In other words, when a
prefetcher cannot issue a prefetch operation due to the throttling
of IPEX , it simply increases 𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 by 1. Similarly, after issuing
the requested prefetch operations, the prefetcher just increments
𝑅𝑡𝑜𝑡𝑎𝑙 to keep track of the number of issued prefetches. Leveraging
𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 and 𝑅𝑡𝑜𝑡𝑎𝑙 , it is trivial to compute throttling rate. Each
time a power cycle starts upon the reboot after power failure, IPEX
restores register 𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 and 𝑅𝑡𝑜𝑡𝑎𝑙 from NVM—as they were
JIT checkpointed right before the power failure—and writes their
division result to 𝑅𝑡𝑟 , i.e., 𝑅𝑡𝑟 = 𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑/𝑅𝑡𝑜𝑡𝑎𝑙 .

With the throttling rate recorded in 𝑅𝑡𝑟 , IPEX updates each volt-
age threshold upon reboot, i.e., at the beginning of each power
cycle, and keeps the rate unchanged throughout that cycle. To be
specific, IPEX decreases the voltage threshold by 0.05V if 𝑅𝑡𝑟 is not
less than 5%—empirically determined through experimentation—so
that IPEX can issue more prefetch operations to handle potential
cache misses and thus improve the overall performance. Otherwise,
IPEX increases the voltage threshold by 0.05V, which restrains IPEX
from generating more prefetch operations, for the sake of energy
saving.

T1 T2

Use A 
(Hit)

Voltile Cache ExecutionNVM

Prefetch 
A

T3

Prefetch B is 
throttled

T0 T1 T2 T3 T4

𝐑𝐭𝐨𝐭𝐚𝐥 0 2 2 Saved 2

𝐑𝐭𝐡𝐫𝐨𝐭𝐭𝐥𝐞𝐝 0 1 1 Saved 1

𝐑𝐭𝐫 50%

𝐑𝐜𝐩𝐝 2 1 1 2

𝐕𝐭𝐡𝐫𝐞𝐬 3.3 V 3.3 V 3.3 V 3.25 V

𝐕𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐨𝐫 3.4 V 3.28 V 3.22 V 3.4 V

T4T0
A

Cache

A B 

A
Cache

A B 

Figure 7: Implementation details of adaptively adjusting a
voltage threshold; 𝑅𝑐𝑝𝑑 is an internal register available in the
existing prefetchers and keeps their current prefetch degree.

Figure 7 shows an example of how IPEX uses those four registers
to dynamically adjust a voltage threshold. Suppose 𝑅𝑖𝑝𝑑 and initial
voltage threshold are 2 and 3.3V, respectively, at the beginning of
the power cycle. At time𝑇1, IPEX lowers the prefetch degree (𝑅𝑐𝑝𝑑 )
from 2 to 1 as the capacitor voltage (𝑉𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 ) drops below 3.3V—
the discussion on how IPEX adjusts the prefetch degree is deferred
to Section 4.2. Because of this, IPEX only prefetches Block A at time
𝑇1, avoiding the prefetch for Block B. In addition, IPEX updates
its hardware structures, e.g., 𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 , 𝑅𝑡𝑜𝑡𝑎𝑙 , 𝑅𝑐𝑝𝑑 . That is, IPEX
increases 𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 and 𝑅𝑡𝑜𝑡𝑎𝑙 by 1 and 2 (Block A prefetched and
Block B suppressed), respectively. At time 𝑇2, reading from the
address of Block A hits in the cache, because the block has been
present therein since time 𝑇1. Upon power failure at time 𝑇3, IPEX
JIT checkpoints 𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 and 𝑅𝑡𝑜𝑡𝑎𝑙 so that they can be restored in
the wake of the power failure (i.e., at time𝑇4). When the next power
cycle begins at time𝑇4, IPEX first calculates 𝑅𝑡𝑟 as 50%, resets 𝑅𝑐𝑝𝑑



ISCA ’25, June 21–25, 2025, Tokyo, Japan Gan Fang, Jianping Zeng, Aditya Gupta, and Changhee Jung

to 𝑅𝑖𝑝𝑑 (i.e., 2), and decreases 𝑉𝑡ℎ𝑟𝑒𝑠 by 0.05 𝑉 since 𝑅𝑡𝑟 is greater
than 5%.

4.2 How to Determine a Prefetch Degree
This section first presents a straightforward yet inefficient approach
to deciding a prefetch degree along with a lesson from the approach
and then introduces IPEX’s efficient approach.

Naive Approach: One might try to use a single voltage thresh-
old (𝑉𝑡ℎ𝑟𝑒𝑠 ) and reduce the prefetch degreewhenever the capacitor’s
voltage falls below 𝑉𝑡ℎ𝑟𝑒𝑠 . Although this approach eliminates some
useless prefetches, many others may still not be averted. Figure
8 illustrates such an example where the original prefetch degree
is 6. At time 𝑇2, IPEX reduces it to 3 (❶) and thus later on issues
only 3 prefetch requests retrieving Block A, B and C (❷) at time 𝑇3.
The underlying assumption is that these 3 prefetched blocks could
contribute to cache hits in the current power cycle. Unfortunately,
this assumption turns out to be wrong in this example: only Block A
receives a cache hit at time 𝑇4, and power failure soon occurs eras-
ing prefetched Block B and C—before their access. Consequently,
the naive approach ends up wasting the harvested energy of the
EHS and failing to achieve high performance.

ABC
Cache

A B C

Voltile Cache ExecutionNVM

Prefetch 
A,B,C

T1

Prefetch 
A,B,C

Use A
(Hit)

T2

Energy Saving Mode Prefetch B and 
C are wasted!

Prefetch 
X1~X6

High Performance Mode

Reduce 
degree to 3

T3 T4

Figure 8: Stratghtforward approach that cannot minimize
useless prefetches; suppose the original prefetch degree is 6.

IPEX’s Efficient Approach: The crux of the problem with the
naive approach is that it does not account for the growing number
of useless prefetches as the EHS nears power failure. Specifically,
after throttling at time 𝑇2 (❶), there are no further adjustments to
the prefetch degree, though the capacitor voltage continues to drop
toward power failure.

The lesson here highlights the importance of the ability to adjust
the prefetch degree as the capacitor voltage changes. In light of
this, IPEX leverages multiple voltage thresholds—ranging from 𝑉1
(highest) to𝑉𝑘 (lowest)3. Whenever each threshold is reached, IPEX
triggers its prefetch degree adjustment. That is, by using multi-
ple voltage thresholds, IPEX can control the aggressiveness of its
prefetch degree throttling. A higher threshold indicates that the EHS
would be far from power failure, i.e., many prefetch operations still
remain useful. Hence, IPEX adopts a conservative approach, avoid-
ing excessive reduction of the prefetch degree. In contrast, a lower
voltage threshold indicates that the EHS is much closer to power
failure, allowing IPEX to throttle prefetches more aggressively—
preferring a smaller prefetch degree—since most prefetched blocks
are unlikely to be used before the failure. Therefore, it is critical
3IPEX defaults k to 2 in the simulation. Section 6.7.1 varies it for sensitivity analysis.

for IPEX to ensure an appropriate prefetch degree at each voltage
level. To realize this, IPEX halves the prefetch degree each time the
capacitor voltage falls below a threshold, and doubles the degree
when the voltage rises above a threshold. This dynamic adjust-
ment enables IPEX to respond to fluctuating input energy, thereby
achieving high performance while reducing energy waste.

Degree = 2 Degree = 0Degree = 1

V1 = 3.3 V V2 = 3.25V 

Low Confidence High Confidence

Energy Saving 
Mode

High Performance 
Mode

Degree = 2 Degree = 1

High Performance 
Mode

Energy Saving 
Mode

T1 T2 T3 T4 T5

T1 T2 T3 T4 T5

𝐕𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐨𝐫 3.35 V
(V > V1)

3.28 V
(V1 ≥ V > V2)

3.35 V
(V > V1)

3.28 V
(V1 ≥ V > V2) 

3.22 V
(V2 ≥ V)

𝐑𝐜𝐩𝐝 2 1 2 1 0

Figure 9: Adjustment of prefetch degree with two voltage
thresholds enabled; their values are determined by the tech-
niques described in Section 4.1.

Figure 9 shows an example of how IPEX dynamically adjusts the
prefetch degree when using two voltage thresholds; they are set to
3.3 V and 3.25 V, respectively. Suppose the initial prefetch degree
is 2. When the capacitor voltage 𝑉𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 is above 𝑉1 at time 𝑇1,
implying that a power interruption is unlikely in the near future, the
prefetcher thus operates as usual, staying in high performance mode
without being throttled by IPEX. Once𝑉𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 drops below𝑉1 at
time 𝑇2, IPEX throttles the prefetching, entering into energy saving
modewith the current prefetch degree𝑅𝑐𝑝𝑑 halved to 1. On the other
hand, if𝑉𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 rises above𝑉1 again at time𝑇3, IPEX doubles the
prefetch degree𝑅𝑐𝑝𝑑 from 1 to 2, switching back to high performance
mode. As 𝑉𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 falls once more, crossing thresholds 𝑉1 and 𝑉2
at time𝑇4 and𝑇5, respectively, IPEX progressively lowers 𝑅𝑐𝑝𝑑 to 1
and eventually to 0 as shown in the figure.

5 Discussion
5.1 Handling Late Prefetches
Suppose the EHS temporarily enters energy saving mode and exits
sometime later, in which case IPEX initially throttles prefetch oper-
ations but may reissue them upon returning to high performance
mode. Due to the resulting delay in issuing the prefetch operations,
some of them could complete later than desired, ending up with
cache misses. Fortunately, IPEX can mitigate this problem in two
ways. First, IPEX, in its current form, reduces the likelihood of the
late prefetches through its multiple voltage thresholds. Instead of
aggressively halting all prefetches when entering into energy saving
mode, IPEX adopts a conservative approach, gradually reducing
the prefetch degree. That way IPEX can issue many prefetches
in a timely manner with the order prioritized by the underlying
prefetcher, thereby decreasing the chances of late prefetches. Sec-
ond, when switching to high performance mode from energy saving
mode, IPEX can be extended to reissue all previously throttled
prefetches. As a result, even if the required cache blocks are not
immediately available, the core pipeline might stall only for a short
period, lowering the penalty during the wait. We leave this opti-
mization as our future work.



Rethinking Prefetching for Intermittent Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

In addition, late prefetches can lead to another inefficiency. For
example, upon a cache miss, the EHS may blindly issue a duplicate
memory request even though a prior prefetch for the same block is
already in progress. That is, the prefetch should have been issued
much earlier to avoid wasting energy and degrading performance.
To prevent this, whenever a cache miss occurs, IPEX first looks
up the prefetch buffer to see whether a request for the desired
block is pending; if that is the case, IPEX refrains from issuing a
redundant request until the pending prefetch completes; otherwise,
IPEX allows the cache miss to be handled as usual.

5.2 Application to Complex Prefetchers
Although the analysis and evaluation of this paper focuses on sim-
ple prefetchers (i.e., the sequential and stride prefetchers listed in
Table 1), IPEX can easily be applied to more complex prefetchers
as well. That is because these complex prefetchers leverage either
prefetch degree registers or some alternative hardware structures
that determine how many cache blocks to fetch. By adding a light-
weight control layer for monitoring the capacitor voltage𝑉𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟
and adjusting the prefetch degree accordingly, IPEX can seamlessly
integrate with any hardware prefetcher.

Rather, complex prefetchers are a great beneficiary of IPEX. In
fact, they offer even more opportunities for IPEX to optimize, com-
pared to simple prefetchers. Specifically, the complex prefetchers
often involve energy-consuming prefetch address generation, e.g.,
through a costly table lookup [40, 97], which becomes as waste-
ful as useless prefetch operations especially when a power outage
is imminent. Therefore, upon entering energy saving mode, IPEX
can not only avert useless prefetch operations but also disable the
useless address generation, thereby further reducing energy waste.

6 Evaluation and Experimental Analyses
We implement IPEX and other prefetching schemes on top of gem5
[14], a cycle-level architecture simulator, to model a single-core
in-order nonvolatile processor clocked at 200𝑀𝐻𝑧 [88]. This con-
figuration has been validated against measurements from a real
NVP platform [88]. All the evaluated applications are compiled for
ARMv7-M ISA and statically linked. We model energy consump-
tion using McPAT [77] and NVSim [35] with 45 𝑛𝑚 technology,
following prior work [88]. To ensure realistic simulation parame-
ters for EHSs, we employ the low-power cache and NVM libraries
from NVSim [35], which are tailored to ultra-low power embedded
systems. In the baseline architecture, a single CPU is connected
to on-chip nonvolatile main memory (NVM) via a simple bus opti-
mized for ultra-low power consumption and efficient data access.
The interconnect utilizes short and energy-efficient pathways to
minimize the energy loss during communication between the CPU
and the main memory. Additionally, the interconnect is designed to
optimize the NVM read operation such that it consumes less energy
than writes [35].

For the baseline, we evaluate NVSRAMCache [44] with both
instruction prefetcher and data prefetcher enabled, and prefetched
blocks are placed in prefetcher buffers to avoid polluting ICache and
DCache. Table 1 provides the simulation configurations for IPEX
and NVSRAMCache, with both instruction and data prefetchers

Table 1: Simulation Configuration.
NVSRAMCache (baseline) IPEX

Capacitor 0.47 𝜇𝐹

ICache/DCache
2kB 4-way SRAM with 16B block size,

LRU replacement, and 1 cycle hit latency,
Access: 0.015 𝑛𝐽 ; Leak: 0.205𝑚𝑊

Prefetch Buffer 4 16-byte entries for each cache
Data Prefetcher Stride Prefetcher (default)
Inst. Prefetcher Sequential Prefetcher (default)

Main Memory
16MB ReRAM,

Read: 0.039 𝑛𝐽 ; Write: 0.160 𝑛𝐽 ;
Leak: 12.133𝑚𝑊

Prefetch Degree 2 initially and up to 4
𝑉𝑡ℎ𝑟𝑒𝑠 Count 2 by default

enabled. In all simulations, both DCache and ICache are based on
SRAM and configured as 2kB 4-way set-associative by default.

As for benchmarks, we utilize 20 applications from Mediabench
[73] and MiBench [45] for fair and accurate evaluation [80]. To
show off how performant IPEX is under varying energy conditions,
we evaluate it using multiple real-world power traces, e.g., RFHome,
RFOffice, solar, and thermal [44, 106]. The solar and thermal sources
have relatively higher portions of stable energy, while RFHome
and RFOffice have less. To ensure that the simulation with different
configurations can receive the same amount of input energy, we
digitize the input energy and record it for repeated uses. Specifically,
we use an energy harvester to collect ambient energy and log the
input power values into a text file. This file contains a series of
numbers, each representing the average input power over a 10
𝜇𝑠 interval (i.e., 𝑃𝑎𝑣𝑔 = 𝐸10𝜇𝑠/10𝜇𝑠 , where 𝐸10𝜇𝑠 is the harvested
energy for every 10 𝜇𝑠). During the execution of the simulator, it
reads these recorded values from the text file, stores the energy in
the capacitor of the energy harvesting system (EHS), and powers
the EHS to run a benchmark program, which is repeated across the
resulting power outages along the way until the completion of the
program. This approach ensures that all simulations with different
configurations receive the same amount of input energy, achieving
fair comparisons.

6.1 Hardware Overhead Analysis
IPEX incurs a trivial hardware overhead owing to its simple hard-
ware design. It devises 4 volatile registers: 𝑅𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 , 𝑅𝑡𝑜𝑡𝑎𝑙 , 𝑅𝑡𝑟 ,
and 𝑅𝑖𝑝𝑑 for each cache. The first three registers are 32-bit each,
while the last one needs only 3 bits. In total, IPEX requires 99 bits per
cache, a total of 198 bits for ICache and DCache. In general, these
additional registers account for only 0.0018% of the core chip area
(0.54𝑚𝑚2, including caches), as estimated using CACTI [77, 118]
with 45 𝑛𝑚 technology.

6.2 Run-Time Performance
Figure 10 shows performance comparison between NVSRAMCache
with and without prefetchers for a variety of applications. On av-
erage, enabling the default prefetchers (Table 1) for ICache and
DCache leads to a 4.96% performance improvement. We also ap-
plied IPEX solely to the default data prefetcher and to both default
prefetchers used in ICache and DCache. As shown in Figure 10,
IPEX significantly improves the performance of NVSRAMCache



ISCA ’25, June 21–25, 2025, Tokyo, Japan Gan Fang, Jianping Zeng, Aditya Gupta, and Changhee Jung

adpcmd
adpcme

basicm fft
g721d

g721e
gsmd

gsme ifft jpegd
patricia

pegwitd
pegwiteqsort

rijndaeld
rijndaele

strin
gs

susanc
susane

unepic
gmean0.8

0.9
1.0
1.1
1.2
1.3

Sp
ee

du
p

NVSRAMCache (No Prefetcher) NVSRAMCache + IPEX for Default Data Prefetcher + IPEX for Both Default Prefetchers

Figure 10: Normalized performance speed to NVSRAMCache (baseline) with RFHome power trace; default prefetchers are
enabled for NVSRAMCache.

adpcmd
adpcme

basicm fft
g721d

g721e
gsmd

gsme ifft jpegd
patricia

pegwitd
pegwiteqsort

rijndaeld
rijndaele

strin
gs

susanc
susane

unepic
gmean0.8

0.9
1.0
1.1
1.2
1.3

Sp
ee

du
p

NVSRAMCache (No Prefetcher) NVSRAMCache (Ideal) + IPEX for Default Data Prefetcher + IPEX for Both Default Prefetchers

Figure 11: Normalized performance speed to NVSRAMCache (ideal) with RFHome power trace; default prefetchers are enabled
for NVSRAMCache (ideal).

(baseline) thanks to its ability to save energy from useless but ex-
pensive prefetch operations. Specifically, IPEX outperforms the
baseline by an average of 3.73% when only applied to the DCache
prefetcher and by an average of 8.96% when applied to both ICache
and DCache prefetchers.

Interestingly, IPEX boosts the performance of the instruction
prefetcher more than that of the data prefetcher. This is because the
evaluated applications exhibit substantially more ICache accesses—
4x on average—compared to DCache accesses, which gives IPEX
more opportunities to reduce useless prefetch operations in the
instruction prefetcher. Notably, IPEX exhibits marginal improve-
ments for certain applications, e.g., g721d and g721e, as the core
pipeline generates fewer prefetch operations due to the inherent
program characteristics of the applications. This leaves a smaller
room for IPEX to throttle prefetches.

In addition, we implement an optimal version of NVSRAMCache
by setting its checkpoint and restoration overheads to zero. We
believe this NVSRAMCache (ideal) represents the upper bound
of any EHSs that are equipped with caches. As Figure 11 shows
that IPEX still achieves a significant performance gain over
the NVSRAMCache (ideal), i.e., an average of 9.06% and up
to 26.02% speedup, demonstrating the potential of applying
IPEX to any kind of EHSs to improve their performance. In
particular, IPEX brings quite a higher performance improvement
to NVSRAMCache (ideal) for several applications, e.g., basicm, fft,
susane, and unepic.

6.3 Prefetch Operation Reduction
To show how effective IPEX is in throttling prefetches when it is
applied to both ICache and DCache prefetchers, we calculate the re-
duction in prefetch operations. As shown in Figure 12, IPEX reduces
an average of 7.11% prefetch operations, which translates to signifi-
cant improvement in energy efficiency and run-time performance.
In particular, IPEX brings more than 15% reduction in prefetch op-
erations for some applications, e.g., gsme and rijndaeld. However,
a high reduction ratio of prefetch operations does not necessarily
lead to significant performance improvements or energy savings.
For instance, IPEX might mistakenly throttle useful prefetches, fail-
ing to hide their cache misses. Furthermore, if the energy costs

ad
pc

m
d

ad
pc

m
e

ba
sic

m fft
g7

21
d

g7
21

e
gs

m
d

gs
m

e iff
t

jp
eg

d
pa

tri
cia

pe
gw

itd
pe

gw
ite

qs
or

t
rij

nd
ae

ld
rij

nd
ae

le
st

rin
gs

su
sa

nc
su

sa
ne

un
ep

ic
gm

ea
n0

5
10
15
20

Re
qu

es
t %

Figure 12: Reduction ratio of prefetch operations when ap-
plying IPEX to both ICache and DCache prefetchers.

ad
pc

m
d

ad
pc

m
e

ba
sic

m fft
g7

21
d

g7
21

e
gm

ea
n

gs
m

d
gs

m
e iff
t

jp
eg

d
pa

tri
cia

pe
gw

itd
pe

gw
ite

qs
or

t
rij

nd
ae

ld
rij

nd
ae

le
st

rin
gs

su
sa

nc
su

sa
ne

un
ep

ic
gm

ea
n01

23
45
67

Ba
nd

wi
dt

h 
%

80

100

en
er

gy
 %

Figure 13: Bars show the reduction ratio ofmainmemory traf-
fic when applying IPEX to both ICache and DCache prefetch-
ers, while the line shows normalized energy consumption to
NVSRAMCache (baseline) with RFHome power trace.

associated with prefetching constitute only a small portion of the
total energy consumption, eliminating useless prefetches may only
yield marginal gains.

6.4 Memory Traffic Reduction
As IPEX throttles prefetch operations, it can lower the pressure
of traffic to main memory. To confirm this, we investigate how
much memory traffic is reduced by IPEX. Figure 13 illustrates that
an average of 2.00% memory traffic is eliminated thanks to IPEX’s
ability to suppress useless prefetch operations (i.e., memory ac-
cesses). It is worth noting that IPEX saves more than 5% memory
traffic, especially for some applications, e.g., rijndaeld and susane.
Figure 13 also presents the normalized total energy consumption
for each application. Notably, some applications exhibit a strong
correlation between memory traffic reduction and overall energy
consumption, while others do not. This occurs because IPEX may
mistakenly throttle useful prefetches, causing processor pipeline



Rethinking Prefetching for Intermittent Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

adpcmd
adpcme

basicm fft
g721d

g721e
gsmd

gsme ifft jpegd
patricia

pegwitd
pegwiteqsort

rijndaeld
rijndaele

strin
gs

susanc
susane

unepic
gmean0.0

0.2
0.4
0.6
0.8
1.0

En
er

gy
 %

Cache Memory Compute Bk+Rst

Figure 14: Normalized energy breakdown to NVSRAMCache (baseline) with RFHome power trace. There are 3 bars for each
application. From left to right: NVSRAMCache, + IPEX for DCache prefetcher, and +IPEX for Both DCache and ICache prefetchers

stalls and increased the system leakage consumption (as discussed
in Section 2.2). Consequently, even when IPEX significantly reduces
memory traffic, total energy consumption may remain high.

6.5 Energy Efficiency
To demonstrate how much energy IPEX can save, we normalize the
energy consumption of IPEX to the NVSRAMCache (baseline) and
break it down into four portions: cache, memory, computing, and
checkpoint/restoration. As shown in Figure 14, when applied to
only the data prefetcher, IPEX reduces the energy consumption of
the main memory by 6.03% and the overall energy consumption by
3.42%. By applying IPEX to both ICache and DCache prefetchers,
the reduction in energy consumption by IPEX goes up to 13.24% for
the main memory and 7.86% for the overall system. We attribute
this large energy saving to two factors: (1) a significant reduction
in prefetch operations as discussed in Section 6.3; and (2) negligible
increases in cache misses, i.e., 0.08% and 0.02% for ICache and
DCache, respectively, as shown in Figure 15.

ad
pc

m
d

ad
pc

m
e

ba
sic

m fft
g7

21
d

g7
21

e
gs

m
d

gs
m

e iff
t

jp
eg

d
pa

tri
cia

pe
gw

itd
pe

gw
ite

qs
or

t
rij

nd
ae

ld
rij

nd
ae

le
st

rin
gs

su
sa

nc
su

sa
ne

un
ep

ic
gm

ea
n

10 1
100
101

M
iss

 %

ICache
DCache

ICache w/ IPEX
DCache w/ IPEX

Figure 15: Cache miss rates with and without IPEX for both
ICache and DCache prefetchers.

6.6 Prefetch Accuracy and Coverage
To further demonstrate why IPEX is performant, we calculate
prefetching accuracy and coverage for ICache and DCache with and
without IPEX. Table 2 shows that IPEX significantly enhances the
accuracy, i.e., increasing it by 35% for ICache and 22.8% for DCache,
while having a minor impact on the coverage, i.e., only 3% and 5%
changes in the coverage for ICache and DCache, respectively.

Table 2: Prefetch accuracy (%) and coverage (%).
Acc. (Inst.) Acc. (Data) Cov. (Inst.) Cov. (Data)

NVSRAMCache 54.03 52.88 80.56 64.51
IPEX 72.88 64.93 78.24 61.44

6.7 Sensitivity Analysis
6.7.1 Voltage Threshold Counts. To show the impact of the num-
ber of voltage thresholds on IPEX, we conduct experiments with

varying the voltage threshold count from 1 to 3, while keeping
other parameters the same. Figure 16 shows IPEX’s speedups over
the NVSRAMCache baseline with the different threshold count. As
shown in the figure, one threshold leads to the worst performance
improvement (i.e., 6.32%) as it limits IPEX’s adaptability to fluctuat-
ing energy quality. With more voltage thresholds, IPEX can control
the prefetch degree in a finer-grained manner, which enables it to
strike a balance between energy saving and high performance. It is
worth noting that the performance improvement slightly plateaus
with three voltage thresholds. This is because additional thresholds
may lead to overly aggressive adjustments in the prefetch degree,
ultimately offsetting the benefits. Therefore, IPEX is configured
with a default of two voltage thresholds.

6.7.2 Different Prefetchers. As discussed in Section 8, there are
myriad prefetching techniques employed in real-world processors.
To demonstrate if IPEX still works well for other prefetchers, we
evaluate several instruction and data prefetchers on top of NVS-
RAMCache and apply IPEX to assess its impact on performance im-
provement. As shown in Table 3, IPEX achieves significant speedups
across three instruction prefetchers, demonstrating its potential to
serve for various EHSs. Interestingly, IPEX delivers even higher
speedup with aggressive prefetchers like TIFS [40], as their aggres-
sive policy generates more useless prefetch operations for EHSs.
This provides IPEX with greater opportunities to reduce energy
waste, thereby improving performance.

Table 3: Speedup of IPEX with varying inst. prefetchers.
Prefetchers Sequential (default) Markov TIFS

IPEX 8.96% 7.89% 9.05%

On the other hand, Table 4 presents the performance impact of
applying IPEX to different data prefetchers while using the default
instruction prefetcher shown in Table 1. The results indicate that
IPEX consistently delivers high speedups regardless of which data
prefetcher is used. This is because all those prefetchers generate
fewer prefetch operations given that power cycles are typically
short in EHSs, which brings a limited opportunity for IPEX to avert
useless prefetches; see Section 6.2 for detailed discussion.

Table 4: Speedup of IPEX with varying data prefetchers.
Prefetchers Stride (default) GHB BO

IPEX 8.96% 8.83% 8.76%

6.7.3 Prefetch Buffer Sizes. To evaluate the impact of prefetch
buffer size on IPEX, we analyze three buffer sizes: 32B (2-entry),
64B (4-entry), and 128B (8-entry), as illustrated in Figure 17. Across
all sizes, IPEX demonstrates stable performance improvements over
the baseline. With a larger prefetch buffer (e.g., 64B and 128B), IPEX
achieves higher performance gains. The reason is that larger buffers



ISCA ’25, June 21–25, 2025, Tokyo, Japan Gan Fang, Jianping Zeng, Aditya Gupta, and Changhee Jung

One Two Three0.900.930.950.971.001.021.051.071.10

Sp
ee

du
p

Default

NVSRAMCache
+ IPEX for Both Default Prefetchers

Figure 16: Threshold counts.
32B 64B 128B0.900.930.950.971.001.021.051.071.10

Sp
ee

du
p

Default

NVSRAMCache
+ IPEX for Both Default Prefetchers

Figure 17: Prefetch buffers.
256B512B 1kB 2kB 4kB 8kB0.90

0.95
1.00
1.05
1.10
1.15

Sp
ee

du
p Default

NVSRAMCache
+ IPEX for Both Default Prefetchers

Figure 18: Cache sizes.
1-Way 2-Way 4-Way 8-Way0.900.930.950.971.001.021.051.071.10

Sp
ee

du
p

Default

NVSRAMCache
+ IPEX for Both Default Prefetchers

Figure 19: Cache associativity.

2MB 4MB 8MB 16MB 32MB0.900.930.950.971.001.021.051.071.10

Sp
ee

du
p

Default

Figure 20: Main memory sizes.
ReRAM STTRAM PCM0.90

0.95
1.00
1.05
1.10
1.15

Sp
ee

du
p Default

Figure 21: NVM technologies.
0.47 1 4.7 10 47 10010000.900.930.950.971.001.021.051.071.10

Sp
ee

du
p

Default

Figure 22: Capacitor sizes (𝜇𝐹 ).
thermal solar RFOfficeRFHome0.900.930.950.971.001.021.051.071.10

Sp
ee

du
p

Default

Figure 23: Power traces.

allow the prefetchers to aggressively load more blocks from main
memory, increasing the likelihood of identifying and avoiding use-
less prefetches. This enables IPEX to effectively reduce energywaste
while maintaining high performance. Note that IPEX’s speedup
saturates beyond 64B buffer as larger prefetch buffers are often
under-utilized due to frequent power failure. Because of this, IPEX
sets the default prefetch buffer size to 64B.

6.7.4 Cache Sizes. To evaluate the impact of cache size on IPEX,
we vary cache size from 256B to 8kB. As shown in Figure 18, IPEX
consistently improves the performance of the baseline across all
cache sizes. For smaller caches (e.g., 256B and 512B), IPEX achieves
notable speedups (12.63% and 11.71%) by effectively reducing the
energy waste caused by useless prefetches. Interestingly, IPEX’s
performance gains start to decline when the cache size is beyond
512B. This is because a larger cache can accommodate more cache
blocks and thus mitigate the benefits of prefetching optimizations.
Nonetheless, even with an 8kB cache, IPEX continues to deliver a
measurable improvement (i.e., 5.66%).

6.7.5 Cache Associativity Sizes. We evaluate the impact of cache
associativity on the performance of IPEX by varying the associa-
tivity from direct-mapped to 8-way caches. Figure 19 shows that
for different cache associativities, IPEX demonstrates consistent
improvement ranging from 4.89% to 8.96%. These numbers confirm
IPEX’s adaptability and efficiency in various cache configurations.

6.7.6 MainMemory Sizes. Memory size is another important factor
impacting the effectiveness of IPEX as larger memories typically
have higher access latencies and per-access energy consumption
[35, 104, 125]. These characteristics amplify the benefits of IPEX
in that it can save more energy waste on more expensive, useless
prefetch operations (memory accesses). To demonstrate this, we
evaluate IPEX with different main memory sizes. As shown in
Figure 20, IPEX achieves a higher speedup as the main memory
gets enlarged, e.g., the speedup increases from 6.02% to 11.17%when
the memory size is increased from 2MB to 32MB.

6.7.7 NVM Technologies. As various nonvolatile memory tech-
niques exhibit disparate access latencies and per-access energy
consumption, they might affect IPEX’s performance. To show such
an impact, we evaluate IPEX for three NVM technologies, e.g.,
ReRAM, STTRAM, and PCM. Figure 21 shows that IPEX achieves
a higher speedup for a slower NVM technology, e.g., 12.84% for

PCM while 8.96% for ReRAM. This confirms our conclusion made
in Section 6.7.6.

6.7.8 Capacitor Sizes. Capacitor size directly influences the fre-
quency and duration of power interruptions in EHSs, which in
turn affects the overall performance, particularly with weak energy
sources like RF. Larger capacitors can store more energy, reducing
the frequency of power outages and allowing for longer power cy-
cles. However, larger capacitors also require longer charging time,
i.e., slow reboot, and cause higher leakage current. Conversely,
smaller capacitors have shorter charging time and lower leakage
power, though they drain quickly and thus lead to more frequent
power outages.

To assess the influence of capacitor sizes on IPEX’s performance,
we conduct a comprehensive sensitivity analysis. The results, de-
picted in Figure 22, highlight that IPEX improves the performance
of the baseline NVSRAMCache regardless of capacitor sizes. How-
ever, the speedup of IPEX diminishes as the capacitor gets enlarged
from 0.47 𝜇𝐹 to 1000 𝜇𝐹 . This trend aligns with our expectations, as
larger capacitors store more energy, enabling longer power cycles
and consequently reducing the frequency of power interruptions.
This eventually reduces opportunities for IPEX to throttle useless
prefetches.

6.7.9 Power Traces. We evaluate IPEX with four power traces:
thermal, solar, RFOffice, and RFHome. As Figure 23 shows, IPEX
consistently improves the performance of NVSRAMCache regard-
less of energy conditions. Here, it is expected to see that IPEX has
fewer opportunities to throttle prefetching and thus results in lower
speedups with power traces with a higher portion of stable energy
(e.g., solar and thermal). However, we notice that the performance
gap between different traces is very small (e.g., the gap is only
1.14% between RFHome and thermal). There are two reasons for
that. First, while solar and thermal traces provide a relatively higher
proportion of stable energy supply compared to the other two, both
solar and thermal traces still include a significant portion of poor
energy, leading to frequent power outages in the EHS. Second, in
our evaluation, energy availability is not the primary factor influ-
encing IPEX’s performance. Due to the small capacitor size (0.47
𝜇𝐹 ), even with a higher proportion of stable energy, the EHS still
experiences frequent power outages. Combining these two reasons,
the performance gap across different energy conditions remains
small.



Rethinking Prefetching for Intermittent Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

0.05V 0.1V 0.15V0.90
0.95
1.00
1.05
1.10

Sp
ee

du
p

Default

NVSRAMCache
+ IPEX for Both Default Prefetchers

Figure 24: Voltage step size.
1% 5% 10% 20%0.90

0.95
1.00
1.05
1.10

Sp
ee

du
p

Default

NVSRAMCache
+ IPEX for Both Default Prefetchers

Figure 25: Throttle rates.

6.7.10 Voltage Steps. As described in Section 4.1, IPEX adaptively
adjusts its voltage thresholds using an empirically selected step size
of 0.05 𝑉 . For sensitivity analysis on the voltage step, we test IPEX
with different step sizes, ranging from 0.05 𝑉 to 0.15 𝑉 . As shown
in Figure 24, IPEX achieves the best performance with a 0.05 𝑉
step size. Larger step sizes can lead to overly aggressive threshold
adjustments, resulting in either eager throttling or lazy throttling
too much and thus degrading performance.

6.7.11 Throttle Rates. In Section 4.1, we empirically set the throttle
rate threshold for triggering the prefetch degree adjustment to
5%. To test the threshold impact on the performance of IPEX, we
finally evaluate it by varying the throttle rate. The results, shown in
Figure 25, indicate that both low (1%) and high (20%) throttle rates
degrade performance, as they lead to excessive eager throttling or
lazy throttling, preventing IPEX from effectively balancing energy
efficiency and prefetching effectiveness.

7 Limitations and Potential of IPEX
As discussed in Sections 6.7.8 and 6.7.9, the efficiency of IPEX de-
creases when used with large capacitors or under consistently sta-
ble energy harvesting conditions. This is because both scenarios
result in extended power cycles with fewer power interruptions,
reducing IPEX’s opportunities to throttle useless prefetches. How-
ever, it is important to note that these scenarios are not typical in
most EHSs. For example, with typical RF-based energy harvesting
[8, 31, 54, 81, 87, 88, 113, 114, 123, 128, 136], EHSs frequently ex-
perience power outages due to the unstable nature of RF sources.
Additionally, the EHSs are often designed to be compact with min-
imal hardware costs. That is, exploiting small capacitors, which
occupy less area, is a more suitable choice for the EHSs [5]. All
these realities highlight the importance of solutions like IPEX that
is devised to optimize energy efficiency in such challenging environ-
ments with scarce energy sources. The takeaway is that although
the performance gains of IPEX diminish in those scenarios with
long power cycles, it consistently delivers significant performance
improvements in more common and challenging environments
where typical EHSs are deployed, as shown in Section 6.

Beyond the promising performance, IPEX offers broad applica-
bility in two ways: (1) it can be easily integrated into a wide range
of EHS architectures and (2) maintains high performance across
diverse workloads, including those with or without peripheral com-
munication.

Application to diverse EHSs: IPEX remains useful across a
wide range of EHS architectures [10, 13, 31, 48, 89, 116, 128, 136],
no matter what crash consistency mechanism is used. The reason
is that these EHSs share a common feature, i.e., all volatile cache
blocks are lost upon power failure, rendering prefetched blocks
useless if they do not receive any hits before the failure. For this

reason, IPEX is highly promising to improve the performance of
any kind of EHS by reducing its useless prefetching operations and
saving energy for making forward progress.

Application to Workloads with and without Peripherals:
Section 6 shows that IPEX’s energy-saving capability brings good
performance for workload without peripheral communication, i.e.,
application kernels only. As for workloads with peripherals, e.g.,
sensors and accelerators, IPEX can deliver even better performance
because of a new challenge brought by peripherals. This challenge
stems from the need to maintain fresh data out of peripherals. This
means that peripheral operations and their dependent computations
must be failure-atomic; the EHS groups them into atomic regions
with checkpoints inserted at the entries of the regions [10, 48, 89,
116]. These region-level checkpoints introduce additional energy
overhead and increase the frequency of power outages, thereby
giving IPEX more opportunities to identify and suppress useless
prefetch operations before outages.

Besides, IPEX can help lower the risk of power failure within
atomic regions and the associated re-execution penalty. The reason
is that IPEX reduces energy waste on useless prefetches, thereby
extending the durations of power cycles for the EHS. Hence, this
can increase the likelihood of atomic regions being completed suc-
cessfully within a single power cycle, which not only ensures the
atomicity guarantee but also improves the overall performance.
Furthermore, IPEX’s energy-saving nature paves the way for ad-
vancements of EHSs. The significant energy efficiency improvement
achieved by IPEX enables more complex and larger applications
to run on EHSs, which would otherwise be unfeasible due to the
high energy demand. We believe that this progress achieved by
IPEX brings us closer than ever to realizing the full potential of
intermittent computing.

8 Related Work
8.1 Prefetching for Non-Intermittent Systems
InstructionPrefetching: An instruction prefetcher reduces pipeline
stalls by predicting and loading instructions into the ICache before
they are needed, trying to make their later accesses hit in the cache.
To achieve this, the prefetcher analyzes program behaviors such
as control flow and instruction execution patterns. IBM introduced
the first instruction prefetcher, next-line prefetching, in its System
360 Model 91 [6], which preloads the next sequential instruction
cacheline(s) to reduce fetch delays in straight-line code execution.

Further advancements tackled prefetching beyond sequential ex-
ecution, addressing branches, procedure calls, and system traps. As
an example, Markov Prefetcher [58] employs a probabilistic model,
i.e., Markov chains [98], to predict future memory accesses based on
past access patterns. Specifically, the Markov prefetcher maintains
a correlation table, the entry of which links a source address to a list
of likely next addresses along with their corresponding probability
of being subsequently accessed. When an instruction is fetched, the
Markov prefetcher consults this table to predict and fetch the most
probable subsequent instruction to the cache.

Unlike the Markov prefetcher, some prior work does not resort
to probabilistic modeling. For instance, Temporal Instruction Fetch
Streaming (TIFS) [40] improves cache hit rates by exploiting tem-
poral repetition in instruction streams. That is, TIFS logs recurring



ISCA ’25, June 21–25, 2025, Tokyo, Japan Gan Fang, Jianping Zeng, Aditya Gupta, and Changhee Jung

sequences of instruction cache misses in an Instruction Miss Log
(IML) and leverages this history for prefetching. On a cache miss,
TIFS first searches its prefetch buffer—that keeps prefetched blocks
to avoid cache pollution—for a matching cache block. If it is found
in the buffer, TIFS forwards the block to the ICache and prefetches
the next block in the current temporal stream. If the search fails,
TIFS consults the IML to prefetch missing instructions.

Data Prefetching: While instruction prefetchers exploit se-
quential or recurring patterns in instruction streams to reduce
the frontend pipeline stalls, data prefetchers handle irregular and
dynamic data access patterns. Among existing data prefetching
schemes, stride prefetching [22] is the most popular technique due
to its simplicity and effectiveness. The stride prefetcher predicts
future memory accesses based on an observed stride between con-
secutive addresses (e.g., accessing addresses𝐴,𝐴+4,𝐴+8, etc.) and
prefetches the next block(s) accordingly with the stride in mind.

To deal with more complex access patterns, researchers propose
multiple advanced prefetching schemes to further reduce cache
misses. One example is Global History Buffer (GHB) prefetching
[97] that captures recent memory access patterns and uses them as
a basis for prefetching. To realize that, the GHP prefetcher tracks
recent L2 cache misses using a circular buffer and groups those
misses generated by the same instruction into a linked list. When a
memory instruction misses in the cache, the GHP prefetcher first
looks up the buffer with the instruction’s PC as a key to figure out
the resulting prefetch candidates on the list and then issues their
prefetch requests for the corresponding cache blocks.

Rather than using such a heavyweight history table, i.e., GHB,
Access Map Pattern Matching (AMPM) Prefetching [51] employs
tiny bitmaps that can capture repetitive memory-access patterns
for prefetching. To achieve this design, memory space is partitioned
into a series of fixed-size regions, and each region maintains its
own bitmap to record those cache blocks accessing the region. On a
cache miss, AMPM consults the bitmap of the region being accessed,
analyzes past access patterns, and determines which blocks are
likely to be accessed in the future so that it can issue prefetches
accordingly.With the help of such compact bitmaps, AMPMdelivers
high prefetch coverage with minimal hardware overhead.

Summary: The above instruction and data prefetchers are de-
signed for non-intermittent systems and do not account for the
frequent power outages that are a norm in EHSs. Therefore, ap-
plying them directly in the intermittent systems can lead to sub-
optimal performance or even performance degradation due to a
large number of useless prefetch operations—generated especially
when power failure is approaching. Consequently, this underscores
the value of IPEX, which throttles the useless prefetches to pre-
vent their energy waste and thus makes the existing prefetchers
beneficial for EHSs.

8.2 Toward Unified Prefetching for both
Non-Intermittent and Intermittent Systems

IPEX can be extended to non-intermittent systems by exploring the
common challenge of prefetch timeliness in non-intermittent and
intermittent systems. In a sense, these systems both contain some
factors that negatively affect the timeliness obviating the prefetched

cache blocks before their use, in which case the prefetching effort
becomes wasted.

In non-intermittent systems, scheduling factors like thread mi-
gration between cores can make prefetched data useless. When
the system reschedules a thread to a different core, the previously
prefetched blocks in the original core may be left unused [64, 111,
117]. Another example is cache sharing in a Simultaneous Multi-
threading (SMT) processor, where one thread’s prefetched data can
evict another thread’s prefetched block before it is used [65, 66, 83].
Also, dynamically resizing a cache to a smaller capacity can inval-
idate prefetched blocks before their use, making the prefetching
effort in vain [33]. To mitigate such useless prefetches, the system
must throttle its prefetching requests on the fly depending on the
manifestation of the negative factors.

On the other hand, in intermittent systems, power failure acts as
an external factor that erases prefetched cache blocks, rendering the
prefetching worthless unless they are accessed before the failure.
Unlike the aforementioned negative factors in non-intermittent
systems, power failure occurs very frequently in intermittent sys-
tems, leading to a lot more useless prefetch operations. Despite the
difference between these systems, their fundamental challenge of
prefetch timeliness remains the same. That is, both non-intermittent
and intermittent systems should avoid useless prefetches that neg-
atively affect performance in any case.

To address this common challenge, we could extend IPEX to a
unified prefetching framework so that it can evaluate prefetch time-
liness and adjust the prefetch degree of the underlying prefetchers
accordingly. This framework would rely on a new metric for quan-
tifying the likelihood that a prefetched block remains available in
the cache before use. In non-intermittent systems, this metric is
influenced by multiple factors as mentioned before, whereas in
intermittent systems, it is affected by input energy availability. This
is why IPEX leverages the capacitor voltage as a proxy of the en-
ergy availability for adjusting prefetch degree dynamically to avert
useless prefetches in EHSs.

9 Conclusion
This paper introduces IPEX that aims to tailor conventional prefetch-
ers for energy harvesting systems by taking into account their
frequent power failure. Depending on the likelihood of power fail-
ure, IPEX adjusts the prefetch degree of the underlying prefetchers
accordingly to strike a balance between energy saving and high
performance. Experimental results demonstrate that IPEX achieves
an average of 7.86% (up to 21.64%) reduction in energy consumption,
which translates to an average of 8.96% (up to 23.49%) performance
gain compared to the baseline equipped with conventional ICache
and DCache prefetchers. We believe that IPEX can lay the foun-
dation for high-performance and energy-efficient prefetching in
intermittent computing systems.

Acknowledgments
We appreciate anonymous reviewers for their invaluable comments
as well as Purdue CompArch members for their constructive feed-
back. This work is in part supported byNSF grants 2001124, 2153749,
and 2314681.



Rethinking Prefetching for Intermittent Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

References
[1] Henko Aantjes, Amjad Y Majid, and Przemysław Pawełczak. 2016. A Testbed

for Transiently Powered Computers. In arXiv preprint arXiv:1606.07623 (2016).
[2] Saad Ahmed, Bashima Islam, Kasim Sinan Yildirim, Marco Zimmerling, Prze-

mysław Pawełczak, Muhammad Hamad Alizai, Brandon Lucia, Luca Mottola,
Jacob Sorber, and Josiah Hester. 2024. The internet of batteryless things. Com-
mun. ACM 67, 3 (2024), 64–73.

[3] Sam Ainsworth and Timothy M. Jones. 2016. Graph Prefetching Using Data
Structure Knowledge. In Proceedings of the 2016 International Conference on
Supercomputing (Istanbul, Turkey) (ICS ’16). Association for Computing Machin-
ery, New York, NY, USA, Article 39, 11 pages. https://doi.org/10.1145/2925426.
2926254

[4] Sam Ainsworth and Timothy M. Jones. 2017. Software prefetching for indirect
memory accesses. In 2017 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO). 305–317. https://doi.org/10.1109/CGO.2017.
7863749

[5] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James Tuck, and
Yan Solihin. 2021. BBB: Simplifying Persistent Programming using Battery-
Backed Buffers. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 111–124. https://doi.org/10.1109/HPCA51647.
2021.00019

[6] DW Anderson, FJ Sparacio, and Robert M Tomasulo. 1967. The IBM System/360
model 91:Machine philosophy and instruction-handling. IBM Journal of Research
and Development 11, 1 (1967), 8–24.

[7] ARM. 2014. Arm Cortex-M7 processor. https://developer.arm.com/Processors/
Cortex-M7

[8] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi,
Davide Brunelli, and Luca Benini. 2014. Hibernus: Sustaining computation
during intermittent supply for energy-harvesting systems. In IEEE Embedded
Systems Letters 7, 1 (2014), 15–18.

[9] S. Beeby and N. White. 2014. Energy Harvesting for Autonomous Systems. In
Artech House, Incorporated. https://books.google.fr/books?id=7H9xdFd4sikC.

[10] Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, and Guillaume
Salagnac. 2017. Peripheral state persistence for transiently-powered systems.
In 2017 Global Internet of Things Summit (GIoTS). IEEE, 1–6.

[11] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz, and
Daniel A. Jiménez. 2019. Perceptron-based prefetch filtering. In Proceedings of
the 46th International Symposium on Computer Architecture (Phoenix, Arizona)
(ISCA ’19). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3307650.3322207

[12] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V Gratz, and
Daniel A Jiménez. 2019. Perceptron-based prefetch filtering. In Proceedings of
the 46th International Symposium on Computer Architecture. 1–13.

[13] Abhishek Bhattacharyya, Abhijith Somashekhar, and Joshua San Miguel. 2022.
NvMR: Non-Volatile Memory Renaming for Intermittent Computing. In Pro-
ceedings of the 49th Annual International Symposium on Computer Architecture
(New York, New York) (ISCA ’22). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3470496.3527413

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[15] Jo Bito, Ryan Bahr, Jimmy G Hester, Syed Abdullah Nauroze, Apostolos Geor-
giadis, , and Manos M Tentzeris. 2017. A novel solar and electromagnetic energy
harvesting system with a 3-D printed package for energy efficient Internet-
of- Things wireless sensors. In IEEE Transactions on Microwave Theory and
Techniques 65, 5 (2017). 1831–1842.

[16] Paul Cahill, Rosemary O’Keeffe, Nathan Jackson, Alan Mathewson, , and Vikram
Pakrashi. 2014. Energy-harvesting thermoelectric sensing for unobtrusive water
and appliance metering. In In Proceedings of the 2nd International Workshop on
Energy Neutral Sensing Systems, ENSsys ’14, Memphis, Tennessee, USA, November
6, 2014. 7–12. https://doi.org/10.1145/2675683.2675692.

[17] Paul Cahill, Rosemary O’Keeffe, Nathan Jackson, Alan Mathewson, , and Vikram
Pakrashi. 2014. Structural health monitoring of reinforced concrete beam using
piezoelectric energy harvesting system. In In EWSHM-7th European workshop
on structural health monitoring.

[18] Shihua Cao and Jianqing Li. 2017. A survey on ambient energy sources and
harvesting methods for structural health monitoring applications. In Advances
in Mechanical Engineering 9, 4 (2017).

[19] Gino Chacon, Elba Garza, Alexandra Jimborean, Alberto Ros, Paul V Gratz,
Daniel A Jiménez, and Samira Mirbagher-Ajorpaz. 2022. Composite Instruction
Prefetching. In 2022 IEEE 40th International Conference on Computer Design
(ICCD). IEEE, 471–478.

[20] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. 2007.
Improving hash join performance through prefetching. ACM Trans. Database
Syst. 32, 3 (Aug. 2007), 17–es. https://doi.org/10.1145/1272743.1272747

[21] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. 2001. Improving index
performance through prefetching. In Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data (Santa Barbara, California,
USA) (SIGMOD ’01). Association for Computing Machinery, New York, NY, USA,
235–246. https://doi.org/10.1145/375663.375688

[22] Tien-Fu Chen and Jean-Loup Baer. 1992. Reducing memory latency via non-
blocking and prefetching caches. ACM SIGPLAN Notices 27, 9 (1992), 51–61.

[23] Qijia Cheng, Zhuoteng Peng, Jie Lin, Shanshan Li, , and Fei Wang. 2015. Energy
harvesting from human motion for wearable devices. In 10th IEEE International
Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 409–412.

[24] Tsai-Kan Chien, Lih-Yih Chiou, Yao-Chun Chuang, Shyh-Shyuan Sheu, Heng-
Yuan Li, Pei-HuaWang, Tzu-Kun Ku,Ming-Jinn Tsai, and Chih-IWu. 2016. A low
store energy and robust ReRAM-based flip-flop for normally offmicroprocessors.
In 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
2803–2806.

[25] Jongouk Choi, Jaeseok Choi, Hyunwoo Joe, and Changhee Jung. 2024. Capham-
mer: Exploiting capacitor vulnerability of energy harvesting systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 43, 11
(2024), 3804–3815.

[26] Jongouk Choi, Hyunwoo Joe, and Changhee Jung. 2022. Capos: Capacitor error
resilience for energy harvesting systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41, 11 (2022), 4539–4550.

[27] Jaeseok Choi, Hyunwoo Joe, Changhee Jung, and Jongouk Choi. 2024. Defending
against emi attacks on just-in-time checkpoint for resilient intermittent systems.
In 2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 121–135.

[28] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. 2019. Achiev-
ing stagnation-free intermittent computation with boundary-free adaptive ex-
ecution. In 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 331–344.

[29] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. 2022. Compiler-
directed high-performance intermittent computation with power failure immu-
nity. In 2022 IEEE 28th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 40–54.

[30] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Compiler di-
rected speculative intermittent computation. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 399–412.

[31] Jongouk Choi, Jianping Zeng, Dongyoon Lee, Changwoo Min, and Changhee
Jung. 2023. Write-Light Cache for Energy Harvesting Systems. In Proceedings of
the 50th Annual International Symposium on Computer Architecture (Orlando, FL,
USA) (ISCA ’23). Association for Computing Machinery, New York, NY, USA,
Article 63, 13 pages. https://doi.org/10.1145/3579371.3589098

[32] Yung-Wey Chong, Widad Ismail, Kwangman Ko, , and Chen-Yi Lee. 2019. Energy
harvesting for wearable devices: A review. In IEEE Sensors Journal 19, 20 (2019).
9047–9062.

[33] Josefa Díaz, J. Ignacio Hidalgo, Francisco Fernández, Oscar Garnica, and Sonia
López. 2009. Improving SMT performance: an application of genetic algorithms
to configure resizable caches. In Proceedings of the 11th Annual Conference
Companion on Genetic and Evolutionary Computation Conference: Late Breaking
Papers (Montreal, Québec, Canada) (GECCO ’09). Association for Computing
Machinery, New York, NY, USA, 2029–2034. https://doi.org/10.1145/1570256.
1570271

[34] Chen Ding and Yutao Zhong. 2003. Predicting whole-program locality through
reuse distance analysis. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation. 245–257.

[35] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P. Jouppi. 2012. NVSim: A
Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile
Memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 31, 7 (2012), 994–1007. https://doi.org/10.1109/TCAD.2012.2185930

[36] Eiman Ebrahimi, Onur Mutlu, and Yale N Patt. 2009. Techniques for bandwidth-
efficient prefetching of linked data structures in hybrid prefetching systems. In
2009 IEEE 15th International Symposium on High Performance Computer Archi-
tecture. IEEE, 7–17.

[37] Gan Fang, Jongouk Choi, and Changhee Jung. 2025. Hybrid Power Failure
Recovery for Intermittent Computing. In Proceedings of the 43rd IEEE/ACM In-
ternational Conference on Computer-Aided Design (Newark Liberty International
Airport Marriott, New York, NY, USA) (ICCAD ’24). Association for Computing
Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/3676536.3676654

[38] Gan Fang and Changhee Jung. 2025. Rethinking Dead Block Prediction for Inter-
mittent Computing. In 2025 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 732–744.

[39] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proactive instruction
fetch. In 2011 44th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). 152–162.

[40] Michael Ferdman, Thomas F Wenisch, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2008. Temporal instruction fetch streaming. In 2008 41st
IEEE/ACM International Symposium on Microarchitecture. IEEE, 1–10.

[41] Tzeno Galchev, J McCullagh, RL Peterson, and K Najafi. 2010. A vibration har-
vesting system for bridge health monitoring applications. In In Proc. PowerMEMS.
179–182.

https://doi.org/10.1145/2925426.2926254
https://doi.org/10.1145/2925426.2926254
https://doi.org/10.1109/CGO.2017.7863749
https://doi.org/10.1109/CGO.2017.7863749
https://doi.org/10.1109/HPCA51647.2021.00019
https://doi.org/10.1109/HPCA51647.2021.00019
https://developer.arm.com/Processors/Cortex-M7
https://developer.arm.com/Processors/Cortex-M7
https://doi.org/10.1145/3307650.3322207
https://doi.org/10.1145/3470496.3527413
https://doi.org/10.1145/1272743.1272747
https://doi.org/10.1145/375663.375688
https://doi.org/10.1145/3579371.3589098
https://doi.org/10.1145/1570256.1570271
https://doi.org/10.1145/1570256.1570271
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1145/3676536.3676654


ISCA ’25, June 21–25, 2025, Tokyo, Japan Gan Fang, Jianping Zeng, Aditya Gupta, and Changhee Jung

[42] Hanwen Gong, Hu He, Liyang Pan, Bin Gao, Jianshi Tang, Sining Pan, Jianing Li,
Peng Yao, Dabin Wu, He Qian, et al. 2023. An Error-Free 64KB ReRAM-Based
nvSRAM Integrated to a Microcontroller Unit Supporting Real-Time Program
Storage and Restoration. IEEE Transactions on Circuits and Systems I: Regular
Papers (2023).

[43] Maria Gorlatova, John Sarik, Guy Grebla, Mina Cong, Ioannis Kymissis, , and Gil
Zussman. 2014. Movers and shakers: Kinetic energy harvesting for the internet
of things. In ACM international conference on Measurement and modeling of
computer systems. 407–419.

[44] Yizi Gu, Yongpan Liu, YiqunWang, Hehe Li, and Huazhong Yang. 2016. NVPsim:
A simulator for architecture explorations of nonvolatile processors. In 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC). 147–152.
https://doi.org/10.1109/ASPDAC.2016.7428003

[45] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially represen-
tative embedded benchmark suite. In In Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No. 01EX538).
IEEE, 3–14.

[46] Youngkwang Han, Zhenyu Hu, Jongouk Choi, Kazi Abu Zubair, Amro Awad,
Changhee Jung, and Brent Byunghoon Kang. 2024. A Novel Efficient Crash
Consistency Solution Enabling Rollback Recovery for Secure NVM in Low-
Power Energy Harvesting Systems. IEEE Transactions on Dependable and Secure
Computing (2024), 1–18. https://doi.org/10.1109/TDSC.2024.3479284

[47] Noureldin Hassan, Byounguk Min, Changhee Jung, Yan Solihin, and Jongouk
Choi. 2025. WarmCache: Exploiting STT-RAM Cache for Low-Power Intermit-
tent Systems. In ISCA-52: 52th Annual International Symposium on Computer
Architecture.

[48] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely execution on inter-
mittently powered batteryless sensors. In Proceedings of the 15th ACMConference
on Embedded Network Sensor Systems. 1–13.

[49] Shao-Yu Huang, Jianping Zeng, Xuanliang Deng, Sen Wang, Ashrarul Sifat,
Burhanuddin Bharmal, Jia-Bin Huang, Ryan Williams, Haibo Zeng, and
Changhee Jung. 2023. Rtailor: Parameterizing soft error resilience for mixed-
criticality real-time systems. In 2023 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 344–357.

[50] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2009. Access map pattern matching
for data cache prefetch. In Proceedings of the 23rd International Conference
on Supercomputing (Yorktown Heights, NY, USA) (ICS ’09). Association for
Computing Machinery, New York, NY, USA, 499–500. https://doi.org/10.1145/
1542275.1542349

[51] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2011. Access map pattern matching for
high performance data cache prefetch. Journal of Instruction-Level Parallelism
13, 2011 (2011), 1–24.

[52] Akanksha Jain and Calvin Lin. 2013. Linearizing irregular memory accesses for
improved correlated prefetching. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. 247–259.

[53] Alexandre Valentin Jamet, Georgios Vavouliotis, Daniel A Jiménez, Lluc Alvarez,
and Marc Casas. 2024. A Two Level Neural Approach Combining Off-Chip Pre-
diction with Adaptive Prefetch Filtering. In 2024 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 528–542.

[54] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QuickRecall:
A low overhead HW/SW approach for enabling computations across power
cycles in transiently powered computers. In In 2014 27th International Conference
on VLSI Design and 2014 13th International Conference on Embedded Systems.
IEEE, 330–335.

[55] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QUICKRE-
CALL: A Low Overhead HW/SW Approach for Enabling Computations across
Power Cycles in Transiently Powered Computers. In In VLSI Design. IEEE Com-
puter Society, 330–335.

[56] Jungi Jeong and Changhee Jung. 2021. PMEM-spec: persistent memory specu-
lation (strict persistency can trump relaxed persistency). In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems.

[57] Jungi Jeong, Jianping Zeng, and Changhee Jung. 2022. Capri: Compiler and
architecture support for whole-system persistence. In Proceedings of the 31st In-
ternational Symposium on High-Performance Parallel and Distributed Computing.
71–83.

[58] Doug Joseph and Dirk Grunwald. 1997. Prefetching using markov predictors. In
Proceedings of the 24th annual international symposium on Computer architecture.
252–263.

[59] Changhee Jung, Daeseob Lim, Jaejin Lee, and Yan Solihin. 2006. Helper thread
prefetching for loosely-coupled multiprocessor systems. In Proceedings 20th
IEEE International Parallel & Distributed Processing Symposium.

[60] Neelu Shivprakash Kalani and Biswabandan Panda. 2021. Instruction Criticality
Based Energy-Efficient Hardware Data Prefetching. IEEE Computer Architecture
Letters 20, 2 (2021), 146–149. https://doi.org/10.1109/LCA.2021.3117005

[61] Neelu Shivprakash Kalani and Biswabandan Panda. 2021. Instruction criticality
based energy-efficient hardware data prefetching. IEEE Computer Architecture

Letters 20, 2 (2021), 146–149.
[62] Pouya Kamalinejad, Chinmaya Mahapatra, Zhengguo Sheng, Shahriar Mirab-

basi, Victor CM Leung, , and Yong Liang Guan. 2015. Wireless energy harvest-
ing for the Internet of Things. In IEEE Communications Magazine 53, 6 (2015).
102–108.

[63] Ervin Kamenar, Saša Zelenika, David Blažević, Senka Maćešić, Goran Gregov,
Kristina Marković, , and Vladimir Glažar. 2016. Harvesting of river flow energy
for wireless sensor network technology. InMicrosystem Technologies 22, 7 (2016),
Vol. 22.

[64] Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. 2011. Inter-core
prefetching for multicore processors using migrating helper threads. In Pro-
ceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (Newport Beach, California,
USA) (ASPLOS XVI). Association for Computing Machinery, New York, NY, USA,
393–404. https://doi.org/10.1145/1950365.1950411

[65] Mahmut Kandemir, Yuanrui Zhang, and Ozcan Ozturk. 2009. Adaptive prefetch-
ing for shared cache based chip multiprocessors. In Proceedings of the Conference
on Design, Automation and Test in Europe (Nice, France) (DATE ’09). European
Design and Automation Association, Leuven, BEL, 773–778.

[66] Mahmut Kandemir, Yuanrui Zhang, and Ozcan Ozturk. 2009. Adaptive prefetch-
ing for shared cache based chip multiprocessors. In 2009 Design, Automation &
Test in Europe Conference & Exhibition. 773–778. https://doi.org/10.1109/DATE.
2009.5090768

[67] Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and Joshua R Smith. 2016.
Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions. In In NSDI, Vol. 16.
151–164.

[68] D. Kim, S.S.-W. Liao, P.H. Wang, J. del Cuvillo, X. Tian, X. Zou, H. Wang, D.
Yeung, M. Girkar, and J.P. Shen. 2004. Physical experimentation with prefetching
helper threads on Intel’s hyper-threaded processors. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004. 27–38. https://doi.org/
10.1109/CGO.2004.1281661

[69] Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-Majeed, Jae-
jin Lee, and Changhee Jung. 2020. Compiler-Directed Soft Error Resilience
for Lightweight GPU Register File Protection. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York,
NY, USA, 989–1004. https://doi.org/10.1145/3385412.3386033

[70] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A.L. Narasimha Reddy, Chris Wilk-
erson, and Zeshan Chishti. 2016. Path confidence based lookahead prefetching.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1–12. https://doi.org/10.1109/MICRO.2016.7783763

[71] Albert Lee, Meng-Fan Chang, Chien-Chen Lin, Chien-Fu Chen, Mon-Shu Ho,
Chia-Chen Kuo, Pei-Ling Tseng, Shyh-Shyuan Sheu, and Tzu-Kun Ku. 2015.
RRAM-based 7T1R nonvolatile SRAM with 2x reduction in store energy and
94x reduction in restore energy for frequent-off instant-on applications. In 2015
Symposium on VLSI Circuits (VLSI Circuits). C76–C77. https://doi.org/10.1109/
VLSIC.2015.7231368

[72] Albert Lee, Chieh-Pu Lo, Chien-Chen Lin, Wei-Hao Chen, Kuo-Hsiang Hsu,
Zhibo Wang, Fang Su, Zhe Yuan, Qi Wei, Ya-Chin King, et al. 2017. A ReRAM-
based nonvolatile flip-flop with self-write-termination scheme for frequent-off
fast-wake-up nonvolatile processors. IEEE Journal of Solid-State Circuits 52, 8
(2017), 2194–2207.

[73] Chunho Lee, Miodrag Potkonjak, , and William H Mangione-Smith. 1997. Medi-
abench: A tool for evaluating and synthesizing multimedia and communications
systems. In In Proceedings of 30th Annual International Symposium on Microar-
chitecture. IEEE, 330–335.

[74] Hyung Gyu Lee and Naehyuck Chang. 2015. Powering the IoT: Storage-less
and converter-less energy harvesting. In In Design Automation Conference (ASP-
DAC), 2015 20th Asia and South Pacific. IEEE, 124–129.

[75] Jaejin Lee, Changhee Jung, Daeseob Lim, and Yan Solihin. 2008. Prefetching with
helper threads for loosely coupled multiprocessor systems. IEEE Transactions
on Parallel and Distributed Systems 20, 9 (2008).

[76] Woo Suk Lee, Hrishikesh Jayakumar, and Vijay Raghunathan. 2014. When they
are not listening: Harvesting power from idle sensors in embedded systems. In
In Proceeding of the 5th International Green Computing Conference (IGCC).

[77] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures. In 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 469–
480.

[78] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh,
and Changhee Jung. 2018. iDO: Compiler-Directed Failure Atomicity for Non-
volatile Memory. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[79] Qingrui Liu and Changhee Jung. 2016. Lightweight hardware support for
transparent consistency-aware checkpointing in intermittent energy-harvesting
systems. In 2016 5th Non-Volatile Memory Systems and Applications Symposium
(NVMSA). IEEE, 1–6.

https://doi.org/10.1109/ASPDAC.2016.7428003
https://doi.org/10.1109/TDSC.2024.3479284
https://doi.org/10.1145/1542275.1542349
https://doi.org/10.1145/1542275.1542349
https://doi.org/10.1109/LCA.2021.3117005
https://doi.org/10.1145/1950365.1950411
https://doi.org/10.1109/DATE.2009.5090768
https://doi.org/10.1109/DATE.2009.5090768
https://doi.org/10.1109/CGO.2004.1281661
https://doi.org/10.1109/CGO.2004.1281661
https://doi.org/10.1145/3385412.3386033
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1109/VLSIC.2015.7231368
https://doi.org/10.1109/VLSIC.2015.7231368


Rethinking Prefetching for Intermittent Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

[80] Qingrui Liu, Xiaolong Wu, Larry Kittinger, Markus Levy, and Changhee Jung.
2017. Benchprime: Effective building of a hybrid benchmark suite. ACM Trans-
actions on Embedded Computing Systems (TECS) 16, 5s (2017), 1–22.

[81] Yongpan Liu, Zewei Li, Hehe Li, Yiqun Wang, Xueqing Li, Kaisheng Ma,
Shuangchen Li, Meng-Fan Chang, Sampson John, Yuan Xie, Jiwu Shu, and
Huazhong Yang. 2015. Ambient energy harvesting nonvolatile processors: From
circuit to system. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC). 1–6. https://doi.org/10.1145/2744769.2747910

[82] Yongpan Liu, Zhibo Wang, Albert Lee, Fang Su, Chieh-Pu Lo, Zhe Yuan, Chien-
Chen Lin, Qi Wei, Yu Wang, Ya-Chin King, et al. 2016. 4.7 A 65nm ReRAM-
enabled nonvolatile processor with 6× reduction in restore time and 4× higher
clock frequency using adaptive data retention and self-write-termination non-
volatile logic. In 2016 IEEE International Solid-State Circuits Conference (ISSCC).
IEEE, 84–86.

[83] Sonia Lopez, Oscar Garnica, David H. Albonesi, Steven Dropsho, Juan Lanchares,
and Jose I. Hidalgo. 2010. Adaptive Cache Memories for SMT Processors. In
2010 13th Euromicro Conference on Digital System Design: Architectures, Methods
and Tools. 331–338. https://doi.org/10.1109/DSD.2010.69

[84] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent Computing: Challenges and Opportunities. In In LIPIcs-
Leibniz International Proceedings in Informatics, Vol. 71. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[85] Chi-Keung Luk and Todd C. Mowry. 1996. Compiler-based prefetching for
recursive data structures. SIGPLAN Not. 31, 9 (Sept. 1996), 222–233. https:
//doi.org/10.1145/248209.237190

[86] Giedrius Lukosevicius, Alberto Rodriguez Arreola, and Alex S. Weddell. 2017.
Using Sleep States toMaximize theActive Time of Transient Computing Systems.
In Proceedings of the Fifth ACM International Workshop on Energy Harvesting and
Energy-Neutral Sensing Systems (Delft, Netherlands) (ENSsys’17). Association
for Computing Machinery, New York, NY, USA, 31–36. https://doi.org/10.1145/
3142992.3142998

[87] KaishengMa, Xueqing Li, Shuangchen Li, Yongpan Liu, John Jack Sampson, Yuan
Xie, and Vijaykrishnan Narayanan. 2015. Nonvolatile Processor Architecture
Exploration for Energy-Harvesting Applications. IEEE Micro 35, 5 (2015), 32–40.
https://doi.org/10.1109/MM.2015.88

[88] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li,
Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2015.
Architecture exploration for ambient energy harvesting nonvolatile processors.
In In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 526–537.

[89] Kiwan Maeng and Brandon Lucia. 2019. Supporting peripherals in intermittent
systems with just-in-time checkpoints. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 1101–1116.

[90] Michele Magno and David Boyle. 2017. Wearable energy harvesting: From body
to battery. In In 2017 12th International Conference on Design and Technology of
Integrated Systems In Nanoscale Era (DTIS). IEEE, 1–6.

[91] Michele Magno, Dario Kneubuhler, Philipp Mayer, and Luca Benini. 2018. Micro
kinetic energy harvesting for autonomous wearable devices. In In 2018 Interna-
tional symposium on power electronics, electrical drives, automation and motion
(SPEEDAM). IEEE, 105–110.

[92] Francesc Martínez Palau, Marti Torrents, Adrià Armejach, and Marc Casas.
2024. Exploiting Vector Code Semantics for Efficient Data Cache Prefetching.
In Proceedings of the 38th ACM International Conference on Supercomputing.
98–109.

[93] Shubdeep Mohapatra and Biswabandan Panda. 2023. Drishyam: An image
is worth a data prefetcher. In 2023 32nd International Conference on Parallel
Architectures and Compilation Techniques (PACT). IEEE, 51–61.

[94] Todd C. Mowry, Angela K. Demke, and Orran Krieger. 1996. Automatic compiler-
inserted I/O prefetching for out-of-core applications. SIGOPS Oper. Syst. Rev. 30,
SI (Oct. 1996), 3–17. https://doi.org/10.1145/248155.238734

[95] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. 1992. Design and evaluation
of a compiler algorithm for prefetching. In Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Boston, Massachusetts, USA) (ASPLOS V). Association for Computing
Machinery, New York, NY, USA, 62–73. https://doi.org/10.1145/143365.143488

[96] Agustín Navarro-Torres, Biswabandan Panda, Jesús Alastruey-Benedé, Pablo
Ibáñez, Víctor Viñals-Yúfera, and Alberto Ros. 2022. Berti: an accurate local-delta
data prefetcher. In 2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 975–991.

[97] Kyle J Nesbit and James E Smith. 2004. Data cache prefetching using a global
history buffer. In 10th International Symposium on High Performance Computer
Architecture (HPCA’04). IEEE, 96–96.

[98] James R Norris. 1998. Markov chains. Number 2. Cambridge university press.
[99] Samuel Pakalapati and Biswabandan Panda. 2020. Bouquet of instruction point-

ers: Instruction pointer classifier-based spatial hardware prefetching. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 118–131.

[100] Biswabandan Panda. 2023. Clip: Load criticality based data prefetching for
bandwidth-constrained many-core systems. In Proceedings of the 56th Annual

IEEE/ACM International Symposium on Microarchitecture. 714–727.
[101] Biswabandan Panda and Shankar Balachandran. 2015. Expert prefetch pre-

diction: An expert predicting the usefulness of hardware prefetchers. IEEE
Computer Architecture Letters 15, 1 (2015), 13–16.

[102] Biswabandan Panda and Shankar Balachandran. 2016. Expert Prefetch Pre-
diction: An Expert Predicting the Usefulness of Hardware Prefetchers. IEEE
Computer Architecture Letters 15, 1 (2016), 13–16. https://doi.org/10.1109/LCA.
2015.2428703

[103] Gyuhae Park, Tajana Rosing, Michael D Todd, Charles R Farrar, and William
Hodgkiss. 2008. Energy harvesting for structural health monitoring sensor
networks. In Journal of Infrastructure Systems 14, 1 (2008), Vol. 14. 64–79.

[104] Matt Poremba and Yuan Xie. 2012. Nvmain: An architectural-level main memory
simulator for emerging non-volatile memories. In 2012 IEEE Computer Society
Annual Symposium on VLSI. IEEE, 392–397.

[105] Shashank Priya and Daniel J Inman. 2009. Energy harvesting technologies,
Vol. 21. Springer.

[106] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System
Support for Long-Running Computation on RFID-Scale Devices. SIGARCH
Comput. Archit. News 39, 1 (mar 2011), 159–170. https://doi.org/10.1145/1961295.
1950386

[107] Glenn Reinman, Brad Calder, and Todd Austin. 1999. Fetch directed instruction
prefetching. In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture. IEEE, 16–27.

[108] Luca Rizzon, Maurizio Rossi, Roberto Passerone, and Davide Brunelli. 2013.
Wireless Sensor Networks for Environmental Monitoring Powered by Micropro-
cessors Heat Dissipation. In In Proceedings of the 1st International Workshop on
Energy Neutral Sensing Systems (ENSSys ’13). ACM, New York, NY, USA, Article 8,
6 pages. https://doi.org/10.1145/2534208.2534216.

[109] Alberto Ros and Alexandra Jimborean. 2021. A cost-effective entangling
prefetcher for instructions. In 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE, 99–111.

[110] Sawan Singh, Arthur Perais, Alexandra Jimborean, and Alberto Ros. 2024. Alter-
nate Path 𝜇-op Cache Prefetching. In 2024 ACM/IEEE 51st Annual International
Symposium on Computer Architecture (ISCA). IEEE, 1230–1245.

[111] Aswinkumar Sridharan and André Seznec. 2016. Discrete Cache Insertion
Policies for Shared Last Level Cache Management on Large Multicores. In
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
822–831. https://doi.org/10.1109/IPDPS.2016.30

[112] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N Patt. 2007. Feedback
directed prefetching: Improving the performance and bandwidth-efficiency
of hardware prefetchers. In 2007 IEEE 13th International Symposium on High
Performance Computer Architecture. IEEE, 63–74.

[113] Fang Su, Yongpan Liu, Yiqun Wang, and Huazhong Yang. 2016. A Ferroelectric
Nonvolatile Processor with 46mus System-Level Wake-up Time and 14mus
Sleep Time for Energy Harvesting Applications. In IEEE Transactions on Circuits
and Systems I: Regular Papers 64, 3 (2016), 596–607.

[114] Fang Su, Kaisheng Ma, Xueqing Li, Tongda Wu, Yongpan Liu, and Vijaykrish-
nan Narayanan. 2017. Nonvolatile processors: Why is it trending?. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017. 966–971.
https://doi.org/10.23919/DATE.2017.7927131

[115] Weipeng Sun, Ting Tan, Zhimiao Yan, Daoli Zhao, Xingqi Luo, , and Wenhu
Huang. 2018. Energy harvesting from water flow in open channel with macro
fiber composite. In AIP Advances 8, 9 (2018), Vol. 8.

[116] Milijana Surbatovich, Limin Jia, and Brandon Lucia. 2021. Automatically enforc-
ing fresh and consistent inputs in intermittent systems. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation. 851–866.

[117] David Tam. 2010. Operating system management of shared caches on multicore
processors. Ph. D. Dissertation. CAN. AAINR73022.

[118] David Tarjan, Shyamkumar Thoziyoor, and Norman Jouppi. 2006. CACTI 4.0.
(07 2006).

[119] Vasudha Vasudha and Biswabandan Panda. 2022. Address Translation Con-
scious Caching and Prefetching for High Performance Cache Hierarchy. In 2022
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 311–321.

[120] Georgios Vavouliotis, Lluc Alvarez, Vasileios Karakostas, Konstantinos Nikas,
Nectarios Koziris, Daniel A Jiménez, andMarc Casas. 2021. Exploiting page table
locality for agile tlb prefetching. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 85–98.

[121] Georgios Vavouliotis, Gino Chacon, Lluc Alvarez, Paul V Gratz, Daniel A
Jiménez, and Marc Casas. 2022. Page size aware cache prefetching. In 2022
55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
956–974.

[122] Cong Wang, Naehyuck Chang, Younghyun Kim, Sangyoung Park, Yongpan Liu,
Hyung Gyu Lee, Rong Luo, and Huazhong Yang. 2014. Storage-less and convert-
erless maximum power point tracking of photovoltaic cells for a nonvolatile
microprocessor. In In Design Automation Conference (ASP-DAC), 2014 19th Asia

https://doi.org/10.1145/2744769.2747910
https://doi.org/10.1109/DSD.2010.69
https://doi.org/10.1145/248209.237190
https://doi.org/10.1145/248209.237190
https://doi.org/10.1145/3142992.3142998
https://doi.org/10.1145/3142992.3142998
https://doi.org/10.1109/MM.2015.88
https://doi.org/10.1145/248155.238734
https://doi.org/10.1145/143365.143488
https://doi.org/10.1109/LCA.2015.2428703
https://doi.org/10.1109/LCA.2015.2428703
https://doi.org/10.1145/1961295.1950386
https://doi.org/10.1145/1961295.1950386
https://doi.org/10.1109/IPDPS.2016.30
https://doi.org/10.23919/DATE.2017.7927131


ISCA ’25, June 21–25, 2025, Tokyo, Japan Gan Fang, Jianping Zeng, Aditya Gupta, and Changhee Jung

and South Pacific. 379–384. https://doi.org/10.1109/ASPDAC.2014.6742919.
[123] Tongda Wu, Kaisheng Ma, Jingtong Hu, Jason Xue, Jinyang Li, Xin Shi,

Huazhong Yang, and Yongpan Liu. 2023. Reliable and Efficient Parallel Check-
pointing Framework for Nonvolatile Processor With Concurrent Peripherals.
IEEE Transactions on Circuits and Systems I: Regular Papers 70, 1 (2023), 228–240.
https://doi.org/10.1109/TCSI.2022.3208523

[124] Yilun Wu, Byounguk Min, Mohannad Ismail, Wenjie Xiong, Changhee Jung,
and Dongyoon Lee. 2024. {IntOS}: Persistent embedded operating system and
language support for multi-threaded intermittent computing. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24). 425–443.

[125] Yuan Xie. 2013. Emerging memory technologies: design, architecture, and applica-
tions. Springer Science & Business Media.

[126] Cheuk-Wang Yau, Tyrone Tai-On Kwok, Chi-Un Lei, , and Yu-Kwong Kwok.
2018. Energy harvesting in internet of things. In Internet of Everything. In IEEE
Communications Magazine 53, 6 (2015). Springer, 35–79.

[127] Jianping Zeng. 2024. Compiler and Architecture Co-Design for Reliable Computing.
Ph. D. Dissertation. Purdue University.

[128] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongyoon
Lee, Changwoo Min, and Changhee Jung. 2021. ReplayCache: Enabling Volatile
Cachesfor Energy Harvesting Systems. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (Virtual Event, Greece) (MICRO
’21). Association for Computing Machinery, New York, NY, USA, 170–182. https:
//doi.org/10.1145/3466752.3480102

[129] Jianping Zeng, Shao-Yu Huang, Jiuyang Liu, and Changhee Jung. 2024. Soft
error resilience at near-zero cost. In Proceedings of the 38th ACM International
Conference on Supercomputing. 176–187.

[130] Jianping Zeng, Jungi Jeong, and Changhee Jung. 2023. Persistent processor ar-
chitecture. In Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture. 1075–1091.

[131] Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. 2021. Turnpike:
Lightweight soft error resilience for in-order cores. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. 654–666.

[132] Jianping Zeng, Shuyi Pei, Da Zhang, Yuchen Zhou, Amir Beygi, Xuebin Yao,
Ramdas Kachare, Tong Zhang, Zongwang Li, Marie Nguyen, Rekha Pitchumani,
Yang Soek Ki, and Changhee Jung. 2025. Performance Characterizations and
Usage Guidelines of Samsung CXL Memory Module Hybrid Prototype. arXiv
preprint arXiv:2503.22017 (2025).

[133] Jianping Zeng, Tong Zhang, and Changhee Jung. 2024. Compiler-directed whole-
system persistence. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). IEEE, 961–977.

[134] Mengying Zhao, Shuo Xu, Lihao Dong, Chun Jason Xue, Dongxiao Yu, Xiaojun
Cai, and Zhiping Jia. 2024. Branch Predictor Design for Energy Harvesting
Powered Nonvolatile Processors. IEEE Trans. Comput. 73, 3 (2024), 722–734.
https://doi.org/10.1109/TC.2023.3339977

[135] Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program locality analysis
using reuse distance. ACM Transactions on Programming Languages and Systems
(TOPLAS) 31, 6 (2009), 1–39.

[136] Yuchen Zhou, Jianping Zeng, Jungi Jeong, Jongouk Choi, and Changhee Jung.
2023. SweepCache: Intermittence-Aware Cache on the Cheap. In MICRO-56:
56th Annual IEEE/ACM International Symposium on Microarchitecture.

[137] Yuchen Zhou, Jianping Zeng, and Changhee Jung. 2024. Lightwsp: Whole-
system persistence on the cheap. In 2024 57th IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 215–230.

https://doi.org/10.1109/TCSI.2022.3208523
https://doi.org/10.1145/3466752.3480102
https://doi.org/10.1145/3466752.3480102
https://doi.org/10.1109/TC.2023.3339977

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Energy Harvesting System (EHS)
	2.2 Exploration and Characterization for Energy-Efficient Prefetching
	2.3 Challenge of Prefetching across Frequent Power Outages

	3 IPEX Approach
	3.1 Reconsidering the Timeliness of Prefetching for Energy Harvesting Systems
	3.2 Overview of IPEX

	4 Implementation Details
	4.1 When to Adjust a Prefetch Degree
	4.2 How to Determine a Prefetch Degree

	5 Discussion
	5.1 Handling Late Prefetches
	5.2 Application to Complex Prefetchers

	6 Evaluation and Experimental Analyses
	6.1 Hardware Overhead Analysis
	6.2 Run-Time Performance
	6.3 Prefetch Operation Reduction
	6.4 Memory Traffic Reduction
	6.5 Energy Efficiency
	6.6 Prefetch Accuracy and Coverage
	6.7 Sensitivity Analysis

	7 Limitations and Potential of IPEX
	8 Related Work
	8.1 Prefetching for Non-Intermittent Systems
	8.2 Toward Unified Prefetching for both Non-Intermittent and Intermittent Systems

	9 Conclusion
	Acknowledgments
	References

