Hybrid Power Failure Recovery for Intermittent Computing

Gan Fang
Purdue University
West Lafayette, IN, USA
fang301@purdue.edu

Abstract

Energy harvesting systems rely on either rollback or roll-forward
recovery to resume power-interrupted program correctly. However,
both recovery schemes have their own inherent drawbacks. To
this end, this paper presents RollSwitch, a hybrid power failure
recovery scheme that can achieve low-cost yet high-performance
intermittent computation for energy harvesting systems. According
to the underlying energy harvesting condition, RollSwitch dynami-
cally switches between rollback and roll-forward recovery modes to
maximize the performance. In particular, RollSwitch leverages the
level of available energy in the capacitor as a proxy for determining
the appropriate recovery mode. For this purpose, RollSwitch de-
vises a simple capacitor energy predictor whose outcome governs
the recovery mode selection in the near future. The experimen-
tal results demonstrate that RollSwitch achieves 15.0% and 19.8%
average performance gains over the state-of-the-art rollback and
roll-forward recovery schemes, respectively.

ACM Reference Format:

Gan Fang, Jongouk Choi, and Changhee Jung. 2024. Hybrid Power Failure
Recovery for Intermittent Computing. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD °24), October 27-31, 2024, New York, NY,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3676536.
3676654

1 Introduction

Energy harvesting systems [1, 38] are becoming a promising al-
ternative to battery-powered embedded systems. The lack of bat-
teries eliminates the need for maintenance and aligns with eco-
friendly practices, attracting many application domains—e.g., tiny
IoT devices and wearables[35, 49]—to build on energy harvest-
ing systems. Instead, they collect necessary energy from ambient
sources such as radio-frequency (RF) and solar, using a tiny ca-
pacitor as energy storage. This implies that energy harvesting sys-
tems can only sustain as long as their capacitor allows; when it
depletes leading to power failure, they lose all volatile data (i.e., reg-
isters) and enter hibernation to allow for recharging the capacitor.
This is so-called intermittent computation [34]. Since the ambient
sources are unstable, energy harvesting systems often suffer unpre-
dictable power failure. Thus, commodity systems use nonvolatile
memory (NVM) as main memory without cache and require crash
consistency support for correct recovery across power failure [4-
7,9, 10, 14, 17, 33, 36, 37, 40, 41, 47, 50, 56].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICCAD °24, October 27-31, 2024, New York, NY, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1077-3/24/10

https://doi.org/10.1145/3676536.3676654

Jongouk Choi
University of Central Florida
Orlando, FL, USA
jongouk.choi@ucf.edu

Changhee Jung
Purdue University
West Lafayette, IN, USA
chjung@purdue.edu

In the literature, roll-forward recovery has gained significant
popularity; it persists registers before imminent power failure—
thus being called just-in-time (JIT) checkpointing—and restores
them in the wake of the failure [17, 33, 41, 42]. All roll-forward
recovery schemes incorporate a voltage monitor to trigger the
checkpoint/restore operation in a timely manner. When the voltage
decreases below a checkpoint threshold, which is taken as a sign of
impending power failure, they checkpoint all registers including
a program counter (PC); later on, if the voltage exceeds a restore
threshold, the monitor wakes up the system so that it recommences
from the PC after retrieving the registers from their checkpoint.
The benefit of roll-forward recovery is that it can resume power-
interrupted program from the interruption point, thereby ensuring
forward progress—even in the presence of frequent power failure. It
is particularly advantageous when the quality of energy harvesting
is good and steady; that is because while power is on, there is no
need to checkpoint along the way.

However, roll-forward recovery requires that the JIT checkpoint-
ing of the entire register file should not be power-interrupted; oth-
erwise, neither crash consistency nor forward progress is ensured.
To render the JIT checkpointing failure-atomic, it is essential for
the threshold voltage to be higher than what is actually required
for persisting all registers [2, 17, 33, 41]. The reason is that fre-
quent charging and discharging can diminish the capacitance grad-
ually [3, 12, 44], jeopardizing the failure atomicity. Also, the voltage
monitor may be inaccurate due to electrical noise, e.g., spontaneous
current fluctuation on environmental change and prolonged circuit
delay during the detection [16, 39, 41].

The crux of the problem is that since power failure can occur
unexpectedly anytime, the safe voltage margin must always be
secured thus preventing the full utilization of harvested energy
for program execution. Moreover, to protect against unpredictable
power failure, roll-forward recovery schemes incur considerable
energy expenditure on voltage monitoring itself, necessitating the
continuous operations of the ADC and comparator. As a result, in
scenarios of poor energy harvesting, a substantial portion of the
hard-won energy is squandered on the monitoring with possibly
little energy left for meaningful forward execution progress.

With that in mind, researchers explore various rollback recov-
ery mechanisms [9, 14, 26, 45, 48] as a substitute to roll-forward
recovery. Instead of the JIT checkpointing, they exploit some form
of periodic checkpointing so that any power failure occurred in
a checkpoint interval (i.e., period in between checkpoints) can be
recovered by restarting the interval with the checkpointed registers
restored. Rollback recovery schemes can be more energy-efficient
than their alternative roll-forward recovery, as they do not require
securing the necessary energy or keeping the voltage monitor active
always. Therefore, rollback recovery schemes allow more harvested

https://doi.org/10.1145/3676536.3676654
https://doi.org/10.1145/3676536.3676654
https://doi.org/10.1145/3676536.3676654

ICCAD ’24, October 27-31, 2024, New York, NY, USA

energy for program execution compared to roll-forward recovery—
particularly in unstable energy.

Nevertheless, since rollback recovery schemes perform periodic
checkpointing regardless of the quality of energy harvesting, they
can end up wasting energy with redundant checkpoints. For exam-
ple, while a sufficient amount of energy is harvested, power failure
rarely occurs, making all checkpoints useless, except for the last
one to be used for the recovery of some future failure if it occurs.

As such, rollback and roll-forward recovery schemes only work
well in their own world. Due to the variation of the energy harvest-
ing quality, they inevitably encounter unfriendly and pathological
cases, losing the performance gain once obtained or causing the
degradation significantly. Consequently, there is a compelling need
for a practical solution that can maintain high performance and
energy efficiency across varying energy harvesting conditions.

In response, this paper presents RollSwitch, a hybrid power
failure recovery scheme that can achieve low-cost yet high-
performance intermittent computation for energy harvesting sys-
tems. At each time quantum, RollSwitch dynamically switches be-
tween rollback and roll-forward recovery modes, taking into ac-
count the underlying energy harvesting condition. The key question
for selecting the best recovery mode is how to precisely capture
the varying conditions of energy harvesting across time quanta.
One might think of predicting whether power failure will occur or
not, e.g., to pick roll-forward recovery for the next quantum when
the failure is unlikely therein. Unfortunately, power failure is quite
unpredictable, which is a norm in energy harvesting systems due
to the volatility of their ambient energy source.

RollSwitch instead leverages the level of available energy in the
capacitor as a proxy of the energy source condition for determining
the appropriate recovery mode. For this purpose, RollSwitch intro-
duces a simple capacitor energy predictor whose outcome governs
the recovery mode selection for each time quantum. The experiment
with 23 applications from Mibench and Mediabench [13, 23, 32]
shows that for various input energy conditions, RollSwitch achieves
average speedups of 15.0% and 19.8% over the state-of-the-art roll-
forward and rollback schemes, respectively. The contributions of
this paper can be summarized as follows:

e RollSwitch is the first work to leverage both roll-forward and
rollback recovery schemes for intermittent computing.

o RollSwitch devises an energy predictor to predict the external
energy conditions for the first time.

o RollSwitch offers seamless and fast recovery mode switching
without compromising crash consistency guarantee.

e RollSwitch adapts the size of time quantum on the fly to maximize
the performance of its hybrid recovery.

o RollSwitch achieves significant speedups over the state-of-the-art
rollback and roll-forward schemes.

2 Recovery Scheme Selection

To realize the full potential of the hybrid power failure recovery, it
is critical to identify and integrate suitable roll-forward and rollback
recovery schemes. Hence, this paper establishes two guiding prin-
ciples for selecting such recovery schemes: (1) Low run-time cost:
they should pursue high-performance design by avoiding costly
checkpoints and associated expenses. (2) Low hardware overhead:

Gan Fang, Jongouk Choi, and Changhee Jung

the design should incorporate as few additional hardware com-
ponents as possible to keep the energy and manufacturing costs
minimal.

Adhering to these principles, this work adopts Nonvolatile Pro-
cessor (NVP) [17, 33, 41, 42] as the roll-forward recovery scheme
because of its fast and energy-efficient JIT checkpointing com-
pared to other roll-forward schemes [2, 17]. The upshot is that NVP
equips each register bit with a nonvolatile flip-flop (NVFF) and thus
enables parallel checkpoint (restoration) of each flip-flop directly
into (from) NVFF. In contrast, other roll-forward recovery schemes
such as Hibernus and QuickRecall [2, 17] use NVM as the check-
point storage, making their checkpoint and restoration demand
more time and power compared to NVP’s. Table 1 shows that the
checkpointing time of NVP is 712500x (2045x) faster than that of
Hibernus[2] (QuickRecall [17]); NVP also reduces the checkpoint-
ing energy consumption of Hibernus[2] (QuickRecall [17]) by 3810x
(4x). Consequently, NVP only needs to secure significantly less en-
ergy in the capacitor for the JIT checkpointing, thereby leaving
much more energy for forward progress compared to Hibernus[2]
and QuickRecall [17].

Table 1: Comparison among roll-forward schemes.

Hibernus[2] | QuickRecall[17] | NVP[42]
Terpe(ns) | 2850000 3180 4
Trst(ns) 2200000 4400 120
Eeciepe (n)) 5716 6 15
Erst (1)) 4582 3 0.08

Another example of roll-forward recovery is Rockclimb [8]. It
leverages compiler instrumentation to statically divide program
into a series of failure-atomic regions. To be specific, Rockclimb
ensures that each region can be completed with a fully charged
capacitor whose capacitance is taken into account to determine
the region boundary. Upon reaching each boundary, Rockclimb
stalls program execution to recharge the capacitor—unless it is
fully charged—so that the next region starts with the full capaci-
tance. As a result, no regions are power-interrupted, i.e., Rockclimb
achieves rollback-free intermittent computation [8] even without
JIT checkpointing. Unfortunately, this is agnostic to the actual en-
ergy conditions, leading to significant slowdown. For example, even
if the capacitor remains sufficiently charged at a region boundary,
Rockelimb should check on the capacitance and secure it, thereby
causing unnecessary delays.

Regarding rollback recovery, this work chooses TCCP [26]
thanks to its simple architecture that achieves both low run-time
(RT) and hardware (HW) overheads compared to other recent roll-
back schemes [14, 45] as shown in Table 2. For example, Ratchet
[45] introduces the correct rollback recovery by identifying and
eliminating the write-after-read (WAR) dependence. If WAR is not
properly handled, its re-execution during rollback can lead to incon-
sistent state—since the original value has been overwritten. Ratchet
employs its compiler to divide program into a series of idempotent
regions [15, 18-20, 22, 25, 27-31, 46, 51-55, 57] so that their bound-
aries cut the WAR dependencies. At the beginning of such a region,
its input registers (i.e., live-in registers) are checkpointed along with
the PC that serves as the recovery point in case the region is power-
interrupted. In this way, Ratchet can recover from power failure by

Hybrid Power Failure Recovery for Intermittent Computing

re-executing the power-interrupted idempotent region. However,
program typically contains a large number of WAR dependencies
[13, 23], which yields many small regions and their resulting nu-
merous checkpoints; the WAR detection of Ratchet is imprecise due
to the conservative compiler’s pointer analysis, thereby generating
many false WAR dependencies and further increasing the number
of checkpoints. Hence, Ratchet can cause significant performance
penalties in that checkpoints are essentially a nonvolatile memory
store, i.e., the most time- and energy-consuming instruction in the
processor.

While Ratchet uses compiler-based WAR detection at the expense
of high run-time overhead, Clank [14] relies on hardware-based de-
tection thus being free from the imprecise pointer analysis and the
excessive checkpoints. Clank does not have to checkpoint volatile
states, e.g., a register file (REG), every time a WAR dependence is
detected. That is because Clanks keeps the data being written in
a special hardware buffer until it overflows, which is helpful for
decreasing the run-time overhead. Besides, Clank employs several
other buffers to detect and resolve WAR dependencies so that it can
correctly restore program states and resume from the most recent
checkpoint across power failure. Although Clank protects NVM
from the inconsistency issue of WAR dependencies during the re-
execution, it comes with considerable hardware overhead. Clank’s
buffers and their associated logic complicates the hardware design
significantly, increasing both die size and power consumption.

In particular, unlike other rollback schemes, TCCP [26] does not
suffer from high run-time and hardware costs thanks to its simple
and lightweight design. As a basis for crash consistency, TCCP
treats all stores as speculative—though they have been retired from
the processor pipeline—and quarantine them in a store buffer (SB)
assuming that power failure is unlikely. Once TCCP progresses to
the point where the SB becomes full, i.e., the speculation window
successfully ends without power failure, TCCP persists both REG
and SB—to the checkpoint storage, i.e., NVFFs and nonvolatile SB
(NVSB)—with its stores made non-speculative as well as begins the
next speculation window where they are to be written to NVM. If
any window is power-interrupted, its stores quarantined in the SB
all disappear (as SB is volatile), which eliminates the issue of poten-
tial WAR dependencies. Consequently, when power comes back,
TCCP can correctly resume from the beginning of the interrupted
window with the REG and the SB restored.

Table 2: Comparison among rollback schemes.

Ratchet[45] | Clank[14] | TCCP[26]
Software Yes No No
RT overhead High Low Low
HW overhead No High Low

3 Crash Consistency Guarantee

This paper picks NVP and TCCP for RollSwitch’s roll-forward and
rollback recovery modes, respectively. For seamless mode transition
in between, RollSwitch allows the SB to be used by NVP, i.e., its JIT
checkpoint persists both the REG and the SB as TCCP checkpoints
them upon the SB overflow, and lets the two recovery modes share
the same checkpoint storage, i.e., NVFFs and NVSB. Thus, no matter
which recovery mode encounters power failure, RollSwitch takes

ICCAD ’24, October 27-31, 2024, New York, NY, USA

M—» =]

Rollback Mode Roll-forward Mode

Figure 1: High-level overview of RollSwitch.

the same recovery process, i.e., the restoration of both REG and RF
from the most recent checkpoint.

Nevertheless, combining NVP and TCCP does not automatically
guarantee crash consistency across power failure, so RollSwitch
still needs to ensure that power-interrupted program can be cor-
rectly resumed with its states restored irrespective of the time point
of power failure. Given that both roll-forward and rollback recovery
modes have their own mechanisms to guarantee crash consistency,
the emphasis is placed on designing additional control logic for
ensuring crash consistency during transitions between the two re-
covery modes. As shown in Figure 1, upon switching from rollback
to roll-forward mode, RollSwitch activates both the ADC and the
voltage monitor as well as deactivates the logic that quarantines
retired stores, allowing the SB to asynchronously write them back
to NVM with no quarantine. Conversely, when switching to roll-
back mode, RollSwitch suspends continuous voltage monitoring
and reactivates the quarantine mechanism in the SB (Figure 1).

In fact, the potential crash inconsistency of RollSwitch is caused
by inconsistent states of memory (not REG!), and they only occur
when post-switch power failure occurs under the rollback recovery
mode?. The crux of the problem is that the power failure may occur
before the SB overflows, i.e., no checkpoint has been made since the
switch to the rollback mode, and thus fail to recover from the failure.
Figure 2 shows two possible cases of such incorrect power failure
recovery, assuming that all memory states are initialized to 1 (i.e.,
M1 : 1 and M2 : 1). In Case 1, RollSwitch first encounters power
failure in the roll-forward mode and thus makes a JIT checkpoint
(ckpt in the figure) with the PC pointing to R1 = M1. After the
restoration (rst) in the wake of the failure, M1 is updated to 2
persisting in NVM (i.e., M1 : 2), and then RollSwitch switches
to the rollback mode. Another power failure happens before any
post-switch checkpoint is made, in which case RollSwitch ends up
restoring REG and SB from ckpt—made in the prior roll-forward
mode—and thus resumes program from R1 = M1 pointed by the PC
of restored REG. Unfortunately, this faces the inconsistency issue
of WAR dependence, i.e., M1 has been overwritten to 2 (M1 : 2 in
NVM) different from the original value (M1 : 1) when ckpt was
made, resulting in incorrect recovery.

In Case 2, RollSwitch first makes a checkpoint (ckpt) with the PC
pointing to R1 = M2 under the rollback recovery mode due to the SB
overflow. Then, it switches to the roll-forward recovery mode and
executes a few instructions along the way, including M2 = R1 +1
that changes M2 to 2 in NVM. After that, it switches back to the

!Registers have no problem since they disappear on power failure.
2Under the roll-forward recovery mode, its JIT checkpointing can handle power failure
as usual, regardless of switchings between the two recovery modes.

ICCAD ’24, October 27-31, 2024, New York, NY, USA

Gan Fang, Jongouk Choi, and Changhee Jung

1.R1=0
2.M1=1 Roll-
3.R1=M2 forward
4. M2=R1+1

Rollback

x F
{

Roll-

forward
5.R1=M1 Roll-
6. Ml R1+1(forward

Rollback
7.R2=M1 Rollback Lo

{ OFF
Lt | G
M2:2 (wrong);
Should be M2:1 (correct)

M1:2 (wrong);
Should be M1:1 (correct)

Casel Case 2

Figure 2: Possible inconsistency with mode changes; SB has 1
entry; white (green) box means volatile (nonvolatile) states.

rollback mode. Unfortunately, power failure then happens before
RollSwitch makes any checkpoint after the mode switching. Here,
RollSwitch ends up restoring from ckpt—made in the prior rollback
mode—and restarting from R1 = M2 pointed by the PC of restored
REG. As a result, due to the WAR dependence on M2, R1 = M2
reads the overwritten value M2 : 2 from NVM, not M2 : 1 at the
time of ckpt, leading to incorrect recovery.

To ensure crash consistency for Case 1 and 2, RollSwitch intro-
duces an additional checkpoint as soon as it switches to the rollback
recovery mode. This obviates the need for re-executing any pre-
switch instructions—potentially involved in WAR dependence as
with Case 1 (M1 = R1+1) and Case 2 (M2 = R1+ 1)—in the wake of
power failure. That is because program should resume from where
the additional checkpoint was made, i.e., the PC of the restored
REG. Consequently, RollSwitch can correctly recover from power
outages all the time regardless of the WAR issue.

Figure 3 shows how RollSwitch ensures crash consistency for
Case 1 and 2 by making a checkpoint (ckpt2) right after switching
to the rollback recovery mode. In Case 1 of the figure, for the re-
covery of the last power failure, RollSwitch resumes program from
Instruction 7 (R2 = M1)—pointed by the PC restored from ckpt2—
retrieving the correct value M1 : 2. In particular, M1 could have
been overwritten in NVM by Instruction 8, leading to crash incon-
sistency. Fortunately, this never happens thanks to RollSwitch’s SB
quarantine mechanism under the rollback recovery mode, i.e., all
written data held in the volatile SB are wiped out upon power fail-
ure. In Case 2 of Figure 3, similar steps follow for crash consistency
guarantee. Here, program resumes from Instruction 5 (R2 = M2)—
as it is pointed by the restored PC where the ckpt2 (not ckpt1) was
made—and retrieves the correct value M2 : 2. Note that Instruction
4 (M2 = R1+1) involved in the WAR dependence here cannot break
the crash consistency, since the instruction is not to be re-executed.

1.R1=0
2.M1=1 Rollback
e
3.R1=M2 Roll-
4.M2=R1+1| forward
ckptZ. T

5.R2=M2
6 M2 = R2 + 1f Rollback

Case 2

5.R1=M1 RoII»
6. M1 = R1+1 forward

o
=~
°
S

N

- RZ + 1 ¢~ Rollback

{
=
—

Casel

Figure 3: Crash consistency guarantee with checkpointing
right after switching to the rollback recovery mode.

As a result, RollSwitch can achieve correct power failure recovery
in Case 2 as well.

4 Timely Recovery Mode Switch

Besides ensuring correct power failure recovery across the mode
switches, RollSwitch should figure out when to switch the recovery
mode in order to maximize the performance. It would be ideal to
change the recovery mode when the energy harvesting quality
varies sufficiently enough to improve the performance with the
other mode, e.g., switching from roll-forward to rollback mode as
energy conditions worsen while doing vice versa as they become
better.

In reality, achieving this is a daunting challenge, since the energy
conditions are affected by various dynamic factors. For example, as
energy harvesting systems are commonly utilized in portable IoT
devices and wearables, the energy conditions can fluctuate with
changes in location. The distance between these devices and their
energy source can vary as they are moved, directly impacting the
harvesting efficiency; larger distances generally result in poorer
energy harvesting. Also, physical obstacles between the energy
source and the device can degrade the harvesting quality by choking
the energy flow. These factors make it difficult to identify the energy
conditions and select the most appropriate recovery mode.

To this end, RollSwitch instead takes advantage of the level of en-
ergy available in the capacitor as a proxy for such a hard-to-assess
energy condition and makes appropriate recovery mode switches
around the threshold level. In particular, RollSwitch introduces a
simple energy predictor taking into account the unique character-
istic of energy harvesting systems which uses their capacitor to
buffer harvested energy. That is, the capacitor voltage provides
immediate and real-time feedback on the available energy, accu-
rately reflecting the current energy state of the energy harvesting

Hybrid Power Failure Recovery for Intermittent Computing

system. Thanks to this characteristic, the capacitor voltage serves
as a reliable proxy for predicting energy conditions, facilitating the
selection of a suitable power failure recovery mode. This simple
prediction approach obviates the need for additional sensors or
hardware features, thus easily integrating with the existing energy
harvesting systems at a lost cost.

To realize the energy predictor, a threshold voltage (Vyp,es)
should be selected appropriately in that it governs the resulting
recovery mode selection. That is, the predictor anticipates good
energy conditions when the capacitor voltage V; gets higher than
Vihres> in which case RollSwitch switches to the roll-forward re-
covery mode; if V. becomes lower than V,j,.., it is likely that the
energy condition would be poor, and thus RollSwitch switches to
the rollback recovery mode.

Note that for the appropriate threshold voltage determination,
RollSwitch should consider not just the performance but also
the crash consistency. To maintain high performance, RollSwitch
should stay in the roll-forward mode as long as possible if the en-
ergy condition is good. The reason is that roll-forward recovery can
minimize run-time overhead by avoiding periodic checkpoints (typ-
ically required in rollback recovery). With that in mind, RollSwitch
prefers a low Vyppes.

However, it should not too low to jeopardize the crash consis-
tency. For crash consistency guarantee, it is crucial to keep the
capacitor voltage V¢ above the checkpoint threshold Vi, with a
margin for covering the energy consumed by the energy prediction
and recovery mode switching. Otherwise, there is a risk that V. dips
below Vegp;, potentially failing to complete the next checkpoint
after the recovery mode switching, i.e., the post-switch checkpoint
could be power-interrupted, in which case crash inconsistency oc-
curs (Section 3). Consequently, to set up a right V;,.., RollSwitch
leverages Equation 1 below.

1 2 2
gcbulk(vthres - Vckpt) > Epredict + Eswitch (1)

where Cp,,ji represents the capacitor size. The left-hand side of
Equation 1 corresponds to the energy available to program execu-
tion after the post-switch checkpoint, while the right-hand side to
the combined energy consumption for the prediction (E,egic;) and
the mode switching (Eg.yizch)-

5 Optimizations

While Section 4 outlines a simple method for predicting energy
conditions, it faces two key limitations that may negatively affect its
efficiency. First, under RollSwitch’s rollback mode, the continuous
voltage monitoring—though it is unnecessary—leads to substan-
tial energy expenditure. Second, the threshold voltage determined
by Equation 1 is not always accurate, e.g., due to the inability to
handle real-time fluctuations in energy conditions. For instance,
once RollSwitch detects that the capacitor voltage (V;) has dropped
below the threshold (V;},..s) and thus switches to the rollback recov-
ery mode, the voltage might happen to go above V;p,..s and quickly
get back provided the energy condition varies suddenly in both
directions. This can cause RollSwitch to make suboptimal recovery
mode decisions, possibly degrading the performance. Therefore,
this paper proposes two optimizations to address the aforemen-
tioned limitations.

ICCAD ’24, October 27-31, 2024, New York, NY, USA

5.1 Optimization 1: Time Quantum and its
Adaptation

The first optimization aims to decrease the energy consumption of
the voltage monitor by avoiding its continuous activation in the
rollback recovery mode. That is, every time RollSwitch switches to
the rollback mode, it adopts a periodic approach that activates the
voltage monitor only at the end of each time quantum for predic-
tions. This method makes the selection of the time quantum length
critical for ensuring timely energy predictions. A naive approach
would be empirically selecting a fixed time quantum and using it
across different energy conditions. This approach is easy to imple-
ment but may not align well with the varying durations of power
cycles—caused by the fluctuation of real energy conditions—which
could make the predefined time quantum inappropriate. For exam-
ple, if a power cycle is shorter than the time quantum, RollSwitch
cannot make any prediction, rendering the recovery mode switch
ineffective. Conversely, an overly long power cycle can result in
an excess of predictions, most of which might be redundant and
fail to trigger recovery mode changes. These unnecessary predic-
tions would increase run-time overhead and energy consumption
without providing any benefits.

Therefore, the size of the time quantum must be adaptive to
accommodate the variable durations of power cycles. This paper
introduces an adaptive technique [21, 24] that dynamically adjusts
the time quantum size based on the number of predictions and
mode switches observed within each power cycle. RollSwitch uti-
lizes two counters: one for tracking the number of predictions and
the other for the number of mode switches. In the wake of power
failure, RollSwitch recalibrates the time quantum based on the two
counter values recorded in the previous power cycle. If no predic-
tions were made, implying that the time quantum was too large,
then RollSwitch halves the quantum for the current cycle. On the
other hand, if the previous cycle had many predictions but only
a few mode switches, indicating excessive non-contributory pre-
dictions, then RollSwitch—in the wake of power failure—increases
the time quantum by 50% to reduce unnecessary predictions and
associated costs. In all other cases, RollSwitch maintains the current
time quantum size.

5.2 Optimization 2: Energy Predictor Design

To improve the adaptability of RollSwitch to varying energy con-
ditions, the second optimization enhances the energy predictor,
addressing shortcomings not taken care of by the basic approach
outlined in Section 4. For this purpose, RollSwitch employs histor-
ical voltage data to train its predictor. The intuition behind this
idea is that combining the current voltage reading with the trained
results, RollSwitch can be more accurate in energy predictions.
This method integrates an N-bit saturation counter which is fed
by detected voltage at each previous prediction point. If the volt-
age exceeds Vs, the counter increases by one; it decreases by
one otherwise. The recovery mode is then determined by the most
significant bit (MSB) of the counter, i.e., ’0’ indicates the need for
the rollback recovery mode, while 1’ indicates the roll-forward
mode. This approach enables RollSwitch to dynamically adjust its
predictions in response to fluctuating energy conditions, thereby

ICCAD ’24, October 27-31, 2024, New York, NY, USA

ﬁ T Time

Time quantum 3 |
J\. J

Y
Rollback

\

Figure 4: Energy prediction examples.

significantly improving its decision-making for appropriate recov-
ery mode selection.

6 Energy Condition Prediction Accuracy and its
Evaluation

To assess the effectiveness of the above two optimizations, this
paper leverages prediction accuracy as a metric—that can tell even-
tually if RollSwitch’s simple energy predictor can work well. The
high-level idea of accuracy calculation is to check whether the volt-
age reading at the end of each time quantum matches the prediction
result. A match indicates a correct prediction, whereas a mismatch
is marked as incorrect. Figure 4 illustrates two scenarios of the
prediction accuracy evaluation. In Time quantum 1, RollSwitch pre-
dicts energy sufficient and opts for the roll-forward recovery mode.
At the end of this time quantum, the capacitor still has sufficient
energy, confirming that the energy conditions are good, and thus
this prediction is correct. In the next time quantum (Time quan-
tum 2), the predictor still anticipates enough energy, but it turns
out that the energy conditions are poor, rendering this prediction
wrong. Figure 7 shows RollSwitch achieves a notably high average
prediction accuracy, i.e., 93%, across different energy conditions.
This confirms the effectiveness of RollSwitch’s energy predictor
and demonstrates that it can switch to the suitable recovery mode
accordingly.

7 Discussion

This section explores two additional factors that can impact
RollSwitch’s overall performance and energy efficiency, i.e., non-
contributory predictions and misprediction penalties.

7.1 Non-contributory Prediction

Non-contributory prediction is defined as energy predictions that
do not lead to a recovery mode change. This occurs if a series of pre-
dictions are made when the detected voltage consistently remains
above or below the predefined threshold (V;,..s). The drawback of
these non-contributory predictions is that they incur extra run-time
overhead by stalling the core pipeline to read the current voltage
level, update the saturation counter accordingly, and finally assess
the need to make a recovery mode change.

While contributory predictions carry similar drawbacks—
increased runtime overhead and energy usage—these are often
justified by the benefits derived from the resulting recovery mode
switching. In other words, if RollSwitch triggers a recovery mode
change, the energy or time saved could outweigh the energy spent
on making the prediction. To the contrary, non-contributory pre-
dictions, where the recovery mode remains unchanged, merely
add to the system’s overhead without improving its efficiency or

Gan Fang, Jongouk Choi, and Changhee Jung

Table 3: Simulation configuration

NVP [41] TCCP [26] RollSwitch
MCU Power | 160 yW /MHz | 160 yW /MHz | 160 yW /MHz
Vinax!Vinin 3.3/2.8 3.3/2.8 3.3/2.8
Vor/ Vrestore 2.9/3.1 2.9/3.1 2.9/3.1
SB size 8 8 8
Capacitance 10 uF 10 uF 10 uF
NVM ReRAM ReRAM ReRAM
NVM size 16MB 16MB 16MB
NVM confi. tCK/tBURST/tRCD/tCL/tWTR/tWR/tXAW
=0.94/7.5/18.0/15.0/7.5/150/30

performance. The crux of the problem is that these redundant pre-
dictions drain valuable energy resources, particularly critical in
energy harvesting systems where efficiency is paramount. Recall
that RollSwitch significantly mitigates the problem by leveraging
an adaptive time quantum resizing strategy—mentioned in Section
5.2—which is specifically designed to decrease non-contributory
predictions and thus able to enhance the performance and energy
efficiency of the target energy harvesting system.

7.2 Misprediction Penalty

Misprediction happens when the energy condition turns out to be
opposite to the prediction result, resulting in two possible scenarios
with associated penalties. First, if RollSwitch incorrectly chooses a
roll-forward mode under poor energy conditions, it wastes hard-
won energy by unnecessarily keeping the voltage monitor active
all the time for the failure-atomic JIT checkpointing required by
the roll-forward recovery In this scenario, the misprediction re-
sults in wasting energy significantly that could have otherwise
be contributed to the forward program execution progress. Sec-
ond, if RollSwitch happens to select a rollback mode under good
energy conditions, it incurs extra latency and the energy consump-
tion in the mean time by making unneeded checkpoints periodi-
cally. In summary both mispredction scenarios either wastes the
energy—painfully harvested in general due to the volatility of en-
ergy sources—or increases unnecessary run-time overhead, which
ultimately results in the degradation of performance and efficiency.
Last but not least, as highlighted in Section 7.1, the prediction it-
self takes both time and power that could exacerbate the system’s
energy inefficiency, so RollSwitch should minimize the chance of
mispredictions. Fortunately, as shown in Section 6, it turns out
that RollSwitch can achieve quite a high prediction accuracy con-
sistently across various energy conditions, thereby keeping the
misprediction penalties low and achieving high performance.

8 Evaluation

8.1 Methodology

We conducted extensive simulations of RollSwitch along with other
schemes using the gem5 simulator configured for the ARM ISA. The
simulations were performed on a single-core in-order NVP, specif-
ically the NVPsim [11], operating at a 25 MHz clock frequency.
NVPsim is not equipped with caches and enables 16 volatile regis-
ters, each of which is attached with a nonvolatile counterpart for
backup purposes. Additionally, we model the voltage monitor with
its initialization, propagation delay, and energy consumption.

Hybrid Power Failure Recovery for Intermittent Computing

N NVP [TCCP [RollSwitch

ald
212
81,0 RS r oot]]
1
20.8 1 ol EET B (T i WL e 1 BT TR R R i
QW VWUULUVWTTTT ULV EOTFE O OCE L UT £ O c
COCcCCcCagNELOE gL CcEGS5ERCGgUTg ©
60808 gorNDE FgNBG 24 Sl m o m 2
w o v v OH5~ o HaN~ © 5 X EE 3 Qo =
5 %3535 a o= g o 2 © = S 2 ¢ n c
S = g 3 o3BT $3535%& ©
= BT 2T
Qo -
5
@

Figure 5: Performance on RFHome trace. The y-axis is the
speedup normalized to NVP.

N NVP I TCCP [RollSwitch

Speedup
corkrk
OO N BN

Figure 6: Performance on thermal trace. The y-axis is the
speedup normalized to NVP.

The simulation configurations are outlined in Table 3. For all
schemes included in the table, we adhere to the configurations
detailed in their original publications, provided they are compatible
with the settings of RollSwitch. Besides, we add an SB for NVP to
allow simultaneous instruction execution and write-back of retired
stores. This enhancement aims to improve the throughput and
efficiency of NVP under varying workload conditions.

For the SB access, we employed a CAM-based associative search
mechanism, evaluating its energy consumption and performance
impact using CACTI [43] modeled on 90 nm technology [17, 33,
41]. As for benchmarks, we utilized a comprehensive suite of 23
applications from Mediabench and MiBench [13, 23, 32], covering a
wide range of processing scenarios to ensure thorough testing of all
schemes under diverse conditions. In our sensitivity analyses, we
evaluate the performance of each scheme across multiple real-world
energy harvesting traces [11], which provide a realistic context for
understanding how systems perform under actual environmental
energy variations. Additionally, we explored the effects of varying
capacitor sizes and SB capacities. These modifications allowed us
to observe how adjustments in hardware configurations influence
system performance, thereby identifying the optimal setups for
maximizing both efficiency and reliability in energy harvesting
systems.

8.2 Hardware Cost Analysis

RollSwitch employs a simple 2-bit saturation counter as its en-
ergy predictor, coupled with minimal control logic to appropri-
ately change the checkpointing scheme based on different recovery
modes. Like TCCP, RollSwitch incorporates a gated store buffer
which delays the release of retired stores. The difference is that
RollSwitch employs additional control logic to enable and disable
the delay logic. That is, this delay is activated only in rollback re-
covery mode, allowing for immediate store release in roll-forward
recovery mode. Furthermore, during rollback mode, RollSwitch
marks each SB entry with a flag bit to denote its non-speculative

ICCAD ’24, October 27-31, 2024, New York, NY, USA

I NVP EEE TCCP E RollSwitch

=
o
S

al2 B
3 >
© 1.0 9
g{ols } } 50 g
V0.6 | I 1y <

RFHome RFOffice solar thermal

Figure 7: Performance on different energy traces.

status and also introduces an instruction counter as a threshold to
ensure the system does not stagnate.

8.3 Performance

Figures 5 and 6 display performance comparisons among NVP,
TCCP, and RollSwitch under two distinct energy conditions. On the
RFHome trace, characterized by generally poor energy harvesting
quality, TCCP outperforms NVP since it does not need to secure
energy for JIT checkpointing and does not need to always maintain
the voltage monitor active. Thus, TCCP has more energy used for
forward progress. However, TCCP is not perfect since there are
still some situations where the energy harvester collects sufficient
energy supply, making its checkpointing redundant. Fortunately,
RollSwitch takes into account varying energy conditions, allowing
it to optimize its performance effectively. As a result, RollSwitch
consistently achieves superior performance, averaging 18.9% faster
than NVP and 12.4% faster than TCCP. Conversely, on the thermal
trace, where energy conditions are typically good, TCCP results
in high run-time overhead due to redundant checkpoints, making
it significantly worse than NVP. For the same reason, RollSwitch
continues to lead, outperforming NVP and TCCP by 13.9% and
42.4%, respectively.

8.4 Sensitivity Analysis of Energy Condition

Figure 7 demonstrates that RollSwitch consistently outperforms
both NVP and TCCP across four different energy traces (15.0% and
19.8% faster respectively). It is not surprising to find that RollSwitch
always outperforms in different energy harvesting qualities. The
reason is that the varying quality of energy supply, which can fluc-
tuate between good and poor, significantly impacts the performance
of NVP and TCCP. For instance, on the RFHome and RFOffice traces,
where energy conditions are generally poor, TCCP outperforms
NVP due to its better efficiency. In contrast, on the solar and ther-
mal traces, where energy conditions are generally good, TCCP is
hampered by frequent redundant checkpoints, leading to worse
performance compared to NVP.

8.5 Sensitivity Analysis on the Size of a
Saturation Counter

The number of bits in the saturation counter directly influences the
accuracy and responsiveness of energy predictions in RollSwitch.
A saturation counter with an appropriate number of bits enables
the system to effectively balance historical data and current trends,
optimizing prediction accuracy and system performance in variable
energy environments. Therefore, we present a sensitivity analysis
regarding the use of different saturation counter bits in RollSwitch
across various energy harvesting traces in Figure 8. The evaluation
results reveal that a 2-bit saturation counter consistently provides

ICCAD ’24, October 27-31, 2024, New York, NY, USA

I 1-bit [2-bit [3-bit

I NVP [TCCP I RollSwitch

Gan Fang, Jongouk Choi, and Changhee Jung

222 ez

) R) EEE TCC
EEA TCCP(RFHome) EEEE NVP(thermal)

=3 RollSwitch(thermal)

Speedup

Speedup
0000 OokHkEE
UVONOOWOWOHN

CoocoOomHEE
LoNmborN

RFHome RFOffice solar thermal ' 4.7uF 10uF

Figure 8: Performance with different
counter bits.

the best performance across four different energy conditions. Con-
versely, configurations with either a 1-bit or 3-bit counter experi-
ence a degradation in performance. The good performance of the
2-bit counter can be attributed to its balanced approach to integrat-
ing historical prediction data. Unlike the 1-bit counter, which lacks
reliance on past prediction outcomes and may therefore easily make
prediction mistakes, the 2-bit counter provides a moderate level of
conservatism that aligns well with the dynamic nature of energy
availability. On the other hand, the 3-bit counter’s performance
suffers because it is overly conservative, making it slow to adapt
to changes in energy conditions. This excessive caution prevents
timely adjustments to recovery modes in response to energy fluc-
tuations, leading to suboptimal performance when rapid response
is necessary.

8.6 Sensitivity Analysis on Capacitor Size

The capacitor size directly determines the booting time and the
power failure number. For the small capacitors, the booting time is
relatively short because only a small amount of collected energy
can make the capacitor fully charged. However, at the same time,
the small capacitor also makes the system susceptible to the ambi-
ent environment. When the ambient energy is scarce, the capacitor
drains very fast, and then power failure occurs frequently. On the
contrary, the large capacitors have longer booting time but make
the system robust to the ambient energy sources (i.e., fewer power
outages). We conduct the sensitivity analysis with different capaci-
tors and show the results in Figure 9. RollSwitch always delivers
the best performance over the others. It is interesting to find that
with a large capacitor (e.g., 1000 uF), the performance gap among
these three schemes is quite small (less than 2% difference). This
outcome is not surprising, given that the booting time is quite long
and constitutes the dominant portion of the total time.

8.7 Sensitivity Analysis of Store Buffer (SB) Size

The SB size is a critical factor that significantly influences the check-
point granularity in TCCP and the rollback mode in RollSwitch. A
larger SB size generally means fewer checkpoints are needed but
potentially increasing the rollback penalty. Conversely, a smaller
SB leads to more frequent checkpoints but reduces the latency as-
sociated with re-execution. To determine the optimal SB size, we
conducted a sensitivity analysis and presented the results in Figure
10. On the RFHome trace, we observe that TCCP underperforms
compared to NVP when using a very small SB (4-entry). This poor
performance is primarily due to the high-frequent checkpointing.
Meanwhile, under the thermal trace, TCCP shows much worse
performance than NVP even with a larger SB size (up to 40 entries).

Figure 9: Capacitor size sensitivity.

QNN

Speedup
coooOorRR

NS

SB8 SB16 SB24

toNmooRN
& RNy

47uF 100uF 1000uF SB SB32 SB40

Figure 10: SB size sensitivity. We show
the performance across two traces.

Table 4: Energy breakdown normalized to the NVP.

Checkpoint | Voltage monitor | Total

NVP 0.069% 8.57% 100%
TCCP 7.60% 0.18% 87.31%
RollSwitch 2.56% 4.49% 70.86%

The stable energy supply in this scenario makes many of TCCP’s
checkpoints redundant, negatively impacting its performance. For-
tunately, the performance of RollSwitch is less affected by variations
in SB size due to its ability to adaptively switch between different
recovery modes. This adaptability allows RollSwitch to mitigate
the impact of SB size on its performance, maintaining efficiency
across different energy conditions.

8.8 Energy Efficiency

Table 4 illustrates the energy consumption of NVP, TCCP, and
RollSwitch across various energy traces. RollSwitch demonstrates
substantially lower energy usage on average, consuming about 30%
less energy than NVP and 18% less than TCCP. This efficiency is
highlighted by RollSwitch’s ability to save considerable amounts of
energy in specific areas: it reduces energy expenditure on voltage
monitoring by 58% compared to NVP. Additionally, when compared
to TCCP, RollSwitch achieves a 66% reduction in energy used for
checkpointing.

9 Conclusion

This paper introduces RollSwitch, a hybrid power recovery ap-
proach for energy harvesting systems. It integrates both rollback
and roll-forward recovery modes and dynamically alternates be-
tween them based on the energy harvesting conditions to optimize
performance and energy efficiency. To determine the appropriate re-
covery mode, RollSwitch leverages the available energy level in the
underlying capacitor as a proxy for the energy harvesting quality. In
particular, RollSwitch devises a simple capacitor energy predictor,
the outcome of which directs the recovery mode selection in the
near future. As a result, RollSwitch significantly outperforms both
state-of-the-art rollback and roll-forward recovery schemes. We
believe that RollSwitch paves the way towards more performant,
adaptable, and sustainable intermittent computation.

Acknowledgments

We appreciate anonymous reviewers for their valuable comments
and Purdue CompArch members for early discussion of this work
with them. At Purdue, this work was supported by NSF grants
2001124 (CAREER), 2153749, and 2314681. At the University of
Central Florida, this work was supported by NSF grant 2314680.

Hybrid Power Failure Recovery for Intermittent Computing ICCAD ’24, October 27-31, 2024, New York, NY, USA

References [29

Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
Directed Lightweight Checkpointing for Fine-Grained Guaranteed Soft Error
Recovery. In SC (2016).

Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
Directed Soft Error Detection and Recovery to Avoid DUE and SDC via Tail-DMR.
ACM Trans. Embed. Comput. Syst. (2016).

Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwarit. 2016. Low-cost
soft error resilience with unified data verification and fine-grained recovery for

[1] Tosiron Adegbija, Anita Rogacs, Chandrakant Patel, and Ann Gordon-Ross. 2018.
Microprocessor Optimizations for the Internet of Things: A Survey. IEEE Trans- [30
actions on Computer-Aided Design of Integrated Circuits and Systems (2018).

[2] Domenico Balsamo, Alex Weddell, Geoff Merrett, Bashir Al-Hashimi, Davide
Brunelli, and Luca Benini. 2014. Hibernus: Sustaining computation during inter- [31
mittent supply for energy-harvesting systems. In Embedded Systems Letters.

[3] Ramzi Chaari, Olivier Briat, and J-M Vinassa. 2014. Capacitance recovery analysis acoustic sensor based detection. In IEEE/ACM MICRO (2016).
and modelling of supercapacitors during cycling ageing tests. Energy conversion [32] Qingrui Liu, Xiaolong Wu, Larry Kittinger, Markus Levy, and Changhee Jung.
and management (2014). 2017. Benchprime: Effective building of a hybrid benchmark suite. ACM TECS
[4] Jongouk Choi, Jaeseok Choi, Hyunwoo Joe, and Changhee Jung. 2024. Capham- (2017).
mer: Exploiting Capacitor Vulnerability of Energy Harvesting Systems. In ACM [33] Yongpan Liu, Zewel Li, Hehe Li, Yiqun Wang, Xueqing Li, Kaisheng Ma,
EMSOFT (2024) (EMSOFT ’24). Shuangchen Li, Meng-Fan Chang, Jack Sampson, Yuan Xie, Jiwu Shu, and
[5] Jongouk Choi, Hyunwoo Joe, and Changhee Jung. 2022. CapOS: Capacitor Error Huazhong Yang. 2015. Ambient Energy Harvesting Nonvolatile Processors:

Resilience for Energy Harvesting Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2022). [34
Jaeseok Choi, Hyunwoo Joe, Changhee Jung, and Jongouk Choi. 2024. Defend-
ing Against EMI Attacks on Just-In-Time Checkpoint for Resilient Intermittent
Systems. In IEEE/ACM MICRO (2024). [35
[7] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. 2019. Achiev-

ing Stagnation-Free Intermittent Computation with Boundary-Free Adaptive [36

From Circuit to System. In DAC (2015).

Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent Computing: Challenges and Opportunities. In Proceedings in
Informatics, Vol. 71. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Michele Magno, Dario Kneubuhler, Philipp Mayer, and Luca Benini. 2018. Micro
kinetic energy harvesting for autonomous wearable devices. In SPEEDAM (2018).

Davide Pala, Ivan Miro-Panades, and Olivier Sentieys. 2021. Freezer: A Specialized

l6

=

Execution. In IEEE RTAS (2019).

Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. 2022. Compiler-
Directed High-Performance Intermittent Computation with Power Failure Im-
munity. In IEEE RTAS (2022).

Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Compiler Directed
Speculative Intermittent Computation. In IEEE/ACM MICRO (2019).

[10] Jongouk Choi, Jianping Zeng, Dongyoon Lee, Changwoo Min, and Changhee

Jung. 2023. Write-Light Cache for Energy Harvesting Systems. In ISCA (2023).
Yizi Gu, Yongpan Liu, Yiqun Wang, Hehe Li, and Huazhong Yang. 2016. NVPsim:
A simulator for architecture explorations of nonvolatile processors. In ASP-DAC.
Anunay Gupta, Om Prakash Yadav, Douglas DeVoto, and Joshua Major. 2018.
A review of degradation behavior and modeling of capacitors. In International
Electronic Packaging Technical Conference and Exhibition (2018).

Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In IEEE WWC (2001).

Matthew Hicks. 2017. Clank: Architectural support for intermittent computation.
In ACM SIGARCH Computer Architecture News (2017).

Shao-Yu Huang, Jianping Zeng, Xuanliang Deng, Sen Wang, Ashrarul Sifat,
Burhanuddin Bharmal, Jia-Bin Huang, Ryan Williams, Haibo Zeng, and Changhee
Jung. 2023. RTailor: Parameterizing Soft Error Resilience for Mixed-Criticality
Real-Time Systems. In RTSS (2023).

Texas Instruments. 2015. TPS380x-Q1 Voltage Detectors. https://www.ti.com/
product/TPS3803-Q1

Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QuickRecall: A
low overhead HW/SW approach for enabling computations across power cycles
in transiently powered computers. In International Conference on VLSI Design.
Jungi Jeong, Jaewan Hong, Seungryoul Maeng, Changhee Jung, and Youngjin
Kwon. 2020. Unbounded hardware transactional memory for a hybrid
DRAM/NVM memory system. In IEEE/ACM MICRO (2020).

[19] Jungi Jeong and Changhee Jung. 2021. PMEM-spec: persistent memory specula-

tion (strict persistency can trump relaxed persistency). In ASPLOS (2021).

Jungi Jeong, Jianping Zeng, and Changhee Jung. 2022. Capri: Compiler and
architecture support for whole-system persistence. In HPDC (2022).

Changhee Jung, Daeseob Lim, Jaejin Lee, and SangYong Han. 2005. Adaptive
execution techniques for SMT multiprocessor architectures. In ACM PPoPP (2005).

Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-Majeed, Jaejin Lee,
and Changhee Jung. 2020. Compiler-directed soft error resilience for lightweight
GPU register file protection. In PLDI (2020).

Chunho Lee, Miodrag Potkonjak, and William H Mangione-Smith. 1997. Media-
bench: A tool for evaluating and synthesizing multimedia and communications
systems. In IEEE MICRO.

Jaejin Lee, Jung-Ho Park, Honggyu Kim, Changhee Jung, Daeseob Lim, and
SangYong Han. 2010. Adaptive execution techniques of parallel programs for
multiprocessors. J. Parallel and Distrib. Comput. (2010).

Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh, and
Changhee Jung. 2018. iDO: Compiler-directed failure atomicity for nonvolatile
memory. In IEEE/ACM MICRO (2018).

Qingrui Liu and Changhee Jung. 2016. Lightweight hardware support for transpar-
ent consistency-aware checkpointing in intermittent energy-harvesting systems.
In NVMSA (2016).

Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2015. Clover:
Compiler Directed Lightweight Soft Error Resilience. In LCTES (2015).

Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2015. Clover:
Compiler directed lightweight soft error resilience. ACM Sigplan Notices (2015).

NVM Backup Controller for Intermittently Powered Systems. IEEE TCAD (2021).
Sebin Shaji Philip, Roberto Passerone, Kasim Sinan Yildirim, and Davide Brunelli.
2023. Intermittent Computing Emulation of Ultralow-Power Processors: Evalua-
tion of Backup Strategies for RISC-V. IEEE TCAD (2023).

Shashank Priya and Daniel J Inman. 2009. Energy harvesting technologies.
ROHM. 2013. Datasheet of BD5xxx Free Delay Time Setting CMOS Voltage
Detector IC Series. https://fscdn.rohm.com/en/products/databook/datasheet/ic/
power/voltage_detector/bd52xxg-e.pdf

Priyanka Singla and Smruti R. Sarangi. 2022. A Survey and Experimental Analysis
of Checkpointing Techniques for Energy Harvesting Devices. J. Syst. Archit.
(2022).

Fang Su, Yongpan Liu, Yiqun Wang, and Huazhong Yang. 2016. A Ferroelectric
Nonvolatile Processor with 46mus System-Level Wake-up Time and 14mus Sleep
Time for Energy Harvesting Applications. In IEEE Transactions on Circuits and
Systems I (2016).

Fang Su, Kaisheng Ma, Xueqing Li, Tongda Wu, Yongpan Liu, and Vijaykrishnan
Narayanan. 2017. Nonvolatile processors: Why is it trending?. In DATE (2017).
David Tarjan, Shyamkumar Thoziyoor, and Norman Jouppi. 2006. CACTI 4.0.
(2006).

Alexander Teverovsky. 2014. Insulation Resistance and Leakage Currents in
Low-Voltage Ceramic Capacitors With Cracks. IEEE Transactions on Components,
Packaging and Manufacturing Technology (2014).

Joel Van Der Woude and Matthew Hicks. 2016. Intermittent computation without
hardware support or programmer intervention. In OSDI (2016).

Sen Wang, Dong Li, Ashrarul H Sifat, Shao-Yu Huang, Xuanliang Deng, Changhee
Jung, Ryan Williams, and Haibo Zeng. 2024. Optimizing Logical Execution Time
Model for Both Determinism and Low Latency. In RTAS (2024).

Yilun Wu, Byounguk Min, Mohannad Ismail, Wenjie Xiong, Changhee Jung,
and Dongyoon Lee. 2024. {IntOS}: Persistent Embedded Operating System and
Language Support for Multi-threaded Intermittent Computing. In OSDI (2024).
Mimi Xie, Mengying Zhao, Chen Pan, Jingtong Hu, Yongpan Liu, and Chun Jason
Xue. 2015. Fixing the broken time machine: Consistency-aware checkpointing
for energy harvesting powered non-volatile processor. In DAC (2015).
Cheuk-Wang Yau, Tyrone Tai-On Kwok, Chi-Un Lei, and Yu-Kwong Kwok. 2018.
Energy harvesting in internet of things.. In IEEE Communications Magazine
(2018).

Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongyoon
Lee, Changwoo Min, and Changhee Jung. 2021. ReplayCache: Enabling Volatile
Cachesfor Energy Harvesting Systems. In IEEE/ACM MICRO (2021).

Jianping Zeng, Shao-Yu Huang, Jiuyang Liu, and Changhee Jung. 2024. Soft Error
Resilience at Near-Zero Cost. In SC (2024).

Jianping Zeng, Jungi Jeong, and Changhee Jung. 2023. Persistent Processor
Architecture. In IEEE/ACM MICRO (2023).

Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. 2021. Turnpike:
Lightweight Soft Error Resilience for In-Order Cores. In IEEE/ACM MICRO (2021).
Jianping Zeng, Tong Zhang, and Changhee Jung. 2024. Compiler-Directed Whole-
System Persistence. In ISCA (2024).

Yida Zhang and Changhee Jung. 2022. Featherweight Soft Error Resilience for
GPUs. In IEEE/ACM MICRO (2022).

Yuchen Zhou, Jianping Zeng, Jungi Jeong, Jongouk Choi, and Changhee Jung.
2023. SweepCache: Intermittence-Aware Cache on the Cheap. In IEEE/ACM
MICRO (2023).

Yuchen Zhou, Jianping Zeng, and Changhee Jung. 2024. LightWSP: Whole-
System Persistence on the Cheap. In IEEE/ACM MICRO (2024).

https://www.ti.com/product/TPS3803-Q1
https://www.ti.com/product/TPS3803-Q1
https://fscdn.rohm.com/en/products/databook/datasheet/ic/power/voltage_detector/bd52xxg-e.pdf
https://fscdn.rohm.com/en/products/databook/datasheet/ic/power/voltage_detector/bd52xxg-e.pdf

	Abstract
	1 Introduction
	2 Recovery Scheme Selection
	3 Crash Consistency Guarantee
	4 Timely Recovery Mode Switch
	5 Optimizations
	5.1 Optimization 1: Time Quantum and its Adaptation
	5.2 Optimization 2: Energy Predictor Design

	6 Energy Condition Prediction Accuracy and its Evaluation
	7 Discussion
	7.1 Non-contributory Prediction
	7.2 Misprediction Penalty

	8 Evaluation
	8.1 Methodology
	8.2 Hardware Cost Analysis
	8.3 Performance
	8.4 Sensitivity Analysis of Energy Condition
	8.5 Sensitivity Analysis on the Size of a Saturation Counter
	8.6 Sensitivity Analysis on Capacitor Size
	8.7 Sensitivity Analysis of Store Buffer (SB) Size
	8.8 Energy Efficiency

	9 Conclusion
	Acknowledgments
	References

